2014, 6(6):481-504.
[摘要](936)
[HTML](0)
[PDF 1.41 M](3097)
[Cited by](5)
摘要:
因为状态空间模型既包含了未知状态,又包含了未知参数,且二者是非线性乘积关系,使得辨识问题变得复杂.针对这一问题,详细研究了规范状态空间系统的状态与参数联合估计方法.采用交互估计理论,即采用递推方法或迭代方法实现系统状态与参数的交互估计.基本思路是在计算参数估计时,辨识算法信息向量中的未知状态用其估计值代替,然后利用获得的参数估计,设计基于参数估计的状态观测器或基于参数估计的Kalman滤波算法估计系统的状态,二者形成一个交互计算过程(递阶计算过程).沿着这条思路,分别从递推方案和迭代方案,研究和提出了基于状态观测器和基于Kalman滤波状态估计的随机梯度辨识算法、递推最小二乘辨识算法、多新息随机梯度辨识算法、多新息最小二乘辨识算法,以及模型分解的辨识算法,并给出了几个典型算法的计算步骤、流程图和计算量.