2025, 17(2):151-164. DOI: 10.13878/j.cnki.jnuist.20241009001
摘要:针对车载影像中的道路病害尺寸差异大,小尺度病害多,导致检测精度低的问题,本文提出一种基于YOLOv5s改进的实时车载影像道路病害检测模型VRD-YOLO(Vehicle-mounted image Road Damage Detection-YOLO).首先,提出通道混合滑动Transformer模块,增强模型全局上下文建模能力,强化细粒度道路病害语义特征信息提取;其次,引入具有跨层融合和跨尺度融合特性的广义特征金字塔,扩大网络感受野,强化多尺度病害特征融合;再次,设计动态检测头,实现尺度感知、空间感知和任务感知,优化模型特征响应,进一步提升模型的检测性能;最后,构建车载影像道路病害数据集VIRDD(Vehicle-mounted Image Road Damage Dataset),扩充现有道路病害数据集数量及类型,并基于该数据集进行消融和对比实验.实验结果表明:VRD-YOLO在VIRDD数据集上的平均精度均值(mAP@0.5)为74.45%,检测速度(FPS)可达到28.56帧/s,与YOLOv5s模型相比,精确度、召回率、F1分数和mAP分别提升2.79、2.32、2.54和3.19个百分点.同时,通过与其他6种经典及主流目标检测模型比较,VRD-YOLO以最少的模型参数量(9.68×106)获得了最佳的检测精度,验证了本文方法的有效性和优越性.
2025, 17(2):165-171. DOI: 10.13878/j.cnki.jnuist.20241024001
摘要:针对点云语义分割中,传统的图神经网络算法存在监督精度要求高、节点标签传递只能单向、未考虑全局信息等缺陷,本文提出一种基于双向注意力机制的点云语义分割方法.首先,将点云超分割为超点并建立超点图,从而将点云分类问题引入超点图网络框架中.然后,利用双向注意力模块,交替关注超点,根据邻接超点的权重更新超点特征,实现信息的双向传递.与以往的图池化方法不同,本文同时引入最大池化和平均池化,并将池化特征结合.最后,使用公开数据集Semantic3D进行训练和实验.结果表明,本文提出的方法可以有效地对标注误差进行纠正,同时耦合局部特征和长程信息,数据集的平均交互比(mIoU)和总体准确度(oAcc)分别为75.4%和95.1%,相比现有方法体现出更完善的标签传递机制和更高的分类精度.
2025, 17(2):172-180. DOI: 10.13878/j.cnki.jnuist.20240927001
摘要:针对桥梁裂缝识别效率低、实时性差等问题,本文提出一种基于改进YOLOv8模型的桥梁裂缝无人机图像检测方法.首先,将动态蛇形卷积核融入YOLOv8骨干部分中的C2f模块,以增强裂缝特征提取能力;然后,引入CAM模块,提升小目标检测能力;最后,通过优化预测框损失函数,减少了低质量数据集对检测结果的影响.实验结果表明,改进后模型的GFLOPs达到14.4,mAP@50达到94%,较基础模型实现了较大的精度提升,检测速度达到147帧/s,能够满足无人机实时裂缝检测需求.
2025, 17(2):181-190. DOI: 10.13878/j.cnki.jnuist.20240513002
摘要:针对三维激光扫描密集点云提取洞室表面变形信息的问题,本文提出一种基于改进的Alpha Shapes算法识别洞室轮廓点云和多尺度模型到模型的点云比对(Multiscale Model-to-Model Cloud Comparison,M3C2)的洞室表面变形监测方法.首先对获取到的两期洞室表面点云数据进行配准,采用改进的Alpha Shapes算法识别洞室表面外轮廓点云.获得的两期洞室表面外轮廓点云经精配准后,再采用M3C2算法进行各点变形值计算,最后进行距离聚类提取连续形变区域.实验结果表明:该方法能够有效剔除点云中细小沟壑处的点及受到混合像元影响的点,在洞室截面到扫描仪距离10 m的范围内,两期点云剔除率分别为14.17%及13.52%,在70 m范围内,分别为6.25%及6.42%;该方法能够准确高效地提取出2倍配准误差以上的洞室表面形变区域.
2025, 17(2):191-202. DOI: 10.13878/j.cnki.jnuist.20240229001
摘要:为了有效解决现有彩色图像可逆数据隐藏(Reversible Data Hiding,RDH)算法中隐写图像视觉质量低的问题,提出一种多层次插值预测和全局排序的彩色图像RDH方案.首先,为了充分利用图像中不同纹理区域的特征,设计一种多层次插值预测方法,显著地提升了像素的预测精度;然后,设计一种基于复杂度的全局排序策略,分别对彩色图像三个通道中的预测误差进行排序,充分利用每个通道中预测误差的全局特征,生成分布更加集中的三维预测误差直方图(Three-Dimensional Prediction Error Histogram,3D PEH);最后,利用自适应三维映射策略修改误差直方图,嵌入秘密数据.实验结果表明,与最新的一些方案相比,所提的方法实现了更好的嵌入性能.
2025, 17(2):203-214. DOI: 10.13878/j.cnki.jnuist.20230927001
摘要:本文提出一种基于梯度权值追踪的剪枝与优化算法(GWP),旨在解决无监督领域中存在的过拟合问题,即在下游任务上的精度远低于在训练集上的精度.针对无监督领域自适应中基于差异与基于对抗的方法,将稠密-稀疏-稠密策略应用于解决过拟合问题.先对网络进行密集预训练,并学出哪些连接是重要的;在剪枝阶段,与原有的稠密-稀疏-稠密策略中的剪枝过程不同,本文的优化算法同时将权值和梯度联合考虑,既考虑到了权值信息(即零阶信息),也考虑到了梯度信息(即一阶信息)对网络剪枝过程的影响;在重密集阶段,恢复被修剪的连接,并以较小的学习率重新训练密集网络.最终,得到的网络在下游任务上取得了理想的效果.实验结果表明,与原有的基于差异和基于对抗的领域自适应方法相比,本文提出的GWP可以有效提升下游任务精度,且具有即插即用的效果.
2025, 17(2):215-226. DOI: 10.13878/j.cnki.jnuist.20230810003
摘要:作为天气系统的主要组成部分,三维云仿真在军事、航空等领域都起着重要作用.目前主流的边界体积层次结构(Bounding Volume Hierarchy,BVH)在处理形状不均匀且体积较大的云时存在渲染效率低下的问题,为此提出一种基于优化BVH算法的云产品渲染方法.将WRF(Weather Research and Forecasting,天气研究与预报)模型网格点中的数据作为云基元,利用Z-order Hilbert曲线对其进行空间排序,结合云基元密度优化BVH算法,提高计算效率.提出ONS (Overlapping Node Sets,重叠节点结构)降低数据存取耗时.优化BVH算法能够减少不必要的光线和三角形面之间的相交测试次数,并解决边界体无效重叠问题.仿真实验显示,SAH(Surface Area Heuristic,表面积启发式)成本较同类最优算法可提升15.6%,EPO(Effective Partial Overlap,有效重叠部分)可提升10%,构建时间减少100%以上,在任意云场景中优化BVH算法的计算效率较同类算法都有显著提高,表明其能实现WRF云产品的快速渲染.
2025, 17(2):227-234. DOI: 10.13878/j.cnki.jnuist.20230921003
摘要:纹理提取是计算机视觉领域的一项重要任务,纹理提取的质量对纹理分类的准确性具有关键影响.传统单一的纹理提取方法难以准确描述各类纹理的特征.本文提出一种基于改进的位置局部二值模式(IPLBP)和Gabor滤波器的纹理提取算法,其中,改进算法在局部二值模式(LBP)的基础上通过提取纹理位置信息来提高纹理描述能力.利用改进后的LBP算法提取局部纹理信息,Gabor滤波器提取全局纹理信息,将两种特征信息进行融合后使用支持向量机(SVM)进行分类.实验结果表明,所提出的算法在纹理材质分类任务上展现出了良好的性能.相比传统的LBP算法,该算法能够更准确地捕捉不同纹理特征之间的差异.
2025, 17(2):235-244. DOI: 10.13878/j.cnki.jnuist.20240617001
摘要:为了更加有效地挖掘滚动轴承信号中所具有的非线性信息并提高轴承故障诊断的准确率,提出一种基于递归分析和Stacking集成学习的轴承故障诊断方法.通过递归分析理论将轴承信号中的非线性信息映射到二维递归图中,分别从图像识别和递归定量分析的角度出发,对应建立了卷积神经网络和支持向量机两个子模型.使用Stacking方法将两个模型进行集成,可以在一定程度上结合两个模型的不同特点,充分发挥两个不同模型的优势.实验结果表明,该方法可以有效提高轴承振动信号的分类准确率,并在不同负载条件下表现出色且稳定,为轴承故障诊断提供了一种可靠的解决方案.
2025, 17(2):245-255. DOI: 10.13878/j.cnki.jnuist.20240512002
摘要:在脑机接口(BCI)领域,手部自然动作脑电识别对实现自然而精确的人机交互具有重要意义.然而,在针对手部自然动作范式的研究中,利用迁移学习提高模型在不同被试之间泛化能力的尝试仍然较少.本文选择掌握、指捏和旋拧三种手部自然动作开展脑电实验,并在实验数据集上验证了CA-MDM(协方差中心对齐-黎曼均值最小距离)和CA-JDA(协方差中心对齐-联合分布适应)这两种迁移学习算法的有效性.实验结果显示,CA-JDA在二分类和四分类任务中的平均准确率分别为60.51%±5.78%和34.89%±4.42%,而CA-MDM在相同分类任务中的表现分别为63.88%±4.59%和35.71%±4.84%.该结果凸显了基于黎曼空间的分类器在处理协方差特征时的优势.本文的研究不仅证实了迁移学习在手部自然动作范式中的可行性,也可为缩短BCI系统的校准时间,实现自然人机交互策略提供帮助.
2025, 17(2):256-264. DOI: 10.13878/j.cnki.jnuist.20240506001
摘要:针对传统路径规划算法在无人驾驶汽车应用中搜索效率低、距离较长和路径不平滑的问题进行改进,使用改进蚁群算法最优路径的关键节点替代动态窗口法的局部目标点,并在动态窗口法评价函数中加入目标距离评价子函数,提高路径规划的效率和平滑性,同时采用路径决策方法解决全局路径失效问题,使车辆摆脱障碍困境,满足路径规划安全性的要求.改进后的蚁群算法利用起止点的位置信息使初始信息素分布不均匀,减少搜索初期阶段的时间消耗;通过维护全局最优路径和强化优秀局部路径的信息素浓度,优化信息素更新机制,提高路径探索效率;对规划路径进行二次优化,优化节点和冗余转折点,减少路径长度.仿真结果表明,相比传统路径规划算法,利用本文提出的融合算法所得到的路径在距离、平滑度和收敛性方面都具有更好的表现,且符合无人驾驶汽车安全行驶的要求.
2025, 17(2):265-272. DOI: 10.13878/j.cnki.jnuist.20240424002
摘要:针对智能车在高速路换道场景中的安全性及舒适性问题,提出一种基于安全势场和多项式换道模型的轨迹规划方法.首先,将车辆的运动在Frenet坐标系中解耦为横向与纵向两个维度,采用五次多项式与四次多项式分别生成车辆的横向d-t轨迹簇与纵向s-t轨迹簇;其次,为提升算法效率,根据车辆动力学特性设计了包含加速度、加速度变化率和曲率的轨迹评价指标,对轨迹簇进行初筛后得到候选轨迹;最后,基于安全势场理论结合行车最小安全距离的概念建立包含安全性、舒适性以及效率的轨迹评价函数对候选轨迹筛选出最优轨迹并完成仿真验证.通过搭建高速双车道弯道模型并设计匀速车流和变速车流的不同换道场景对该算法进行仿真验证,结果表明:在换道过程中,自车与各障碍车之间的碰撞风险值始终小于碰撞风险临界值,保证了换道的安全性;在不同行驶工况下,自车的加速度、加速度变化率以及轨迹曲率均小于阈值,表明该换道轨迹规划算法在多种障碍车流中均能保证自车换道的舒适性与换道轨迹的平滑性.
2025, 17(2):273-281. DOI: 10.13878/j.cnki.jnuist.20230523002
摘要:本文研究了一类基于传感器网络传输的具有加性和乘性噪声的线性系统的事件触发分布式滤波问题,并且所考虑的过程噪声和测量噪声具有一步自相关且两步交叉相关特性.首先,利用一个递推方程描述系统的动态偏差,并采用伯努利分布的随机变量刻画随机丢包现象.其次,引入事件触发机制在确保滤波性能的前提下降低信息传输频率,构造基于一致性的新型分布式滤波器.再次,利用随机分析技术建立滤波误差协方差上界的递推方程并通过最小化方差约束指标,给出滤波增益的表达式.最后,通过数值仿真验证了所提出的优化滤波方法的有效性.
2025, 17(2):282-292. DOI: 10.13878/j.cnki.jnuist.20240409002
摘要:智能站主设备保护采样回路异常因具有隐蔽性、瞬时性、不稳定性等特点而难以发现.本文提出一种基于同源录波数据的主设备保护采样回路异常预警方案.首先,通过合理设定预警门槛和波形分析判据判断采样回路是否出现异常;其次,基于采样回路缺陷处理文本及设备运维手册等信息构建采样回路运维知识图谱,实现采样回路异常辅助决策;最后,以某变电站实际缺陷为例进行案例分析.结果表明,所提方案能有效地发现采样回路异常,构建的知识图谱可为运维人员提供异常处置决策参考,极大地缓解人工压力.
2025, 17(2):293-300. DOI: 10.13878/j.cnki.jnuist.20240505001
摘要:考虑到变电站噪声的频谱特点,针对自适应算法存在收敛速度慢、跟踪能力弱和运算量大的缺陷,研究了一种改进生成式固定滤波器有源噪声控制(Enhanced Generative Fixed-Filter Active Noise Control,EGFANC)方法.采用轻量级的一维卷积神经网络(1-Dimensional Convolutional Neural Network,1D CNN)根据噪声帧信息输出权重向量后与子控制滤波器组合,以自适应地生成适用于各种噪声的控制滤波器.仿真结果表明,EGFANC方法在处理动态噪声和变压器谐波噪声时具有更好的降噪性能和鲁棒性,同时,EGFANC为不同类型噪声选择适当的预训练控制滤波器,可以显著减少收敛时间.
地址:江苏省南京市宁六路219号 邮编:210044
联系电话:025-58731025 E-mail:nxdxb@nuist.edu.cn
南京信息工程大学学报 ® 2025 版权所有 技术支持:北京勤云科技发展有限公司