• Current Issue
  • Online First
  • Archive
  • Most Downloaded
  • Special Issue
  • Special Column
    Select AllDeselectExport15
    Display Method:
    2025,17(2):151-164, DOI: 10.13878/j.cnki.jnuist.20241009001
    Abstract:
    To accurately detect road damages with large size differences and small scales in vehicle-mounted images,this paper presents a real-time road damage detection model based on improved YOLOv5s,termed as VRD-YOLO (Vehicle-mounted image Road Damage Detection-YOLO).Firstly,a Channel Mix Slide Transformer (CMST) module is proposed to enhance the model's global context modeling capability and strengthen the extraction of fine-grained road damage semantic feature information.Secondly,a generalized feature pyramid with cross-layer fusion and cross-scale fusion is introduced to expand the network receptive field and strengthen the fusion of multi-scale damage features.Thirdly,to optimize the model's feature response and further improve detection performance,a dynamic detection head is designed to achieve scale perception,spatial perception,and task perception.Finally,a Vehicle-mounted Image Road Damage Dataset (VIRDD) is constructed to expand the quantity and types of existing road damage datasets,and ablation and comparative experiments are conducted based on this dataset.Experimental results show that the VRD-YOLO achieves a mean Average Precision (mAP@0.5) of 74.45% on the VIRDD dataset,with a detection speed reaching 28.56 frames per second.Compared to the YOLOv5s model,VRD-YOLO improves the precision,recall,F1 score,and mAP by 2.79,2.32,2.54,and 3.19 percentage points,respectively.Additionally,compared with six other classical and mainstream object detection models,the proposed VRD-YOLO attains the highest detection accuracy with the smallest model parameter count of 9.68 million,verifying its effectiveness and superiority.
    2025,17(2):165-171, DOI: 10.13878/j.cnki.jnuist.20241024001
    Abstract:
    To address the deficiencies of traditional graph neural network methods in point cloud semantic segmentation,such as high requirements for supervision accuracy,one-way only node label propagation,and neglect of global information,this paper proposes a point cloud semantic segmentation method based on bidirectional attention mechanism.Firstly,the point cloud is over-segmented into superpoints and a superpoint graph is constructed,thus introducing the point cloud classification problem into the superpoint graph network framework.Subsequently,the two-way attention module is utilized to alternately focus on superpoints and update their features according to the weights of neighboring superpoints,enabling the two-way information propagation.Unlike previous graph pooling methods,this study applies both maximum pooling and average pooling,and combines their pooled features.Finally,the public dataset Semantic 3D is used for training and experiments.The results show that the proposed method can effectively correct labelling errors while coupling local features with long-range information,and the mean Intersection over Union (mIoU) and overall Accuracy (oAcc) of the dataset are 75.4% and 95.1%,respectively,exhibiting a better label delivery mechanism and higher classification accuracy compared with existing methods.
    2025,17(2):172-180, DOI: 10.13878/j.cnki.jnuist.20240927001
    Abstract:
    To tackle the current challenges of low efficiency,poor performance,and inadequate real-time capabilities in bridge crack detection,this paper introduces a drone-based image detection method for bridge cracks using an improved YOLOv8 model.Firstly,the dynamic snake convolution kernel is integrated into the C2f module in the backbone of YOLOv8 to enhance the crack feature extraction.Then,the Context Augmentation Module (CAM) is introduced to improve the detection capability for small targets.Finally,the influence of low-quality datasets on detection results is reduced via optimizing the prediction box loss function.Experimental results show that the improved model achieves a GFLOPs of 14.4 and a mean Average Precision (mAP@50) of 94%,exhibiting a significant accuracy improvement compared to the baseline models.The detection speed reaches 147 frames per second,satisfying the requirements for real-time crack detection by UAVs.
    2025,17(2):181-190, DOI: 10.13878/j.cnki.jnuist.20240513002
    Abstract:
    Aiming at the extraction of cavern surface deformation from three-dimensional laser scanning dense point clouds,we propose a method integrating the Multiscale Model-to-Model Cloud Comparison (M3C2) with an improved Alpha Shapes algorithm.First,the two-phase surface point cloud data are registered,and the improved Alpha Shapes algorithm is used to identify the outer contour point clouds.After the fine registration of these two-phase outer contour point clouds,the M3C2 algorithm calculates the deformation value of each point,and finally the continuous deformation regions are extracted through distance clustering.Experimental results show that the proposed method effectively eliminates the points at small furrows as well as those affected by mixed pixels.Specifically,the removal rates of point clouds in the two phases within 10 m from the scanner to the cavern section are 14.17% and 13.52%,respectively,which are 6.25% and 6.42% within 70 m.This method accurately and efficiently extracts the cavern surface deformation regions with more than twice the registration error.
    2025,17(2):191-202, DOI: 10.13878/j.cnki.jnuist.20240229001
    Abstract:
    To address the low visual quality of stego-image in existing color image Reversible Data Hiding (RDH) algorithms,a novel RDH scheme utilizing multi-level interpolation prediction and global sorting is proposed.Firstly,to fully exploit the features of different texture regions in the image,a multi-level interpolation prediction method is designed to significantly improve the prediction accuracy of pixels.Then,a complexity-based global sorting strategy is designed to sort the prediction errors in the three channels of color images respectively,thereby fully utilizing the global characteristics of the prediction errors in each channel to generate a more concentrated Three-Dimensional Prediction Error Histogram (3D PEH).Finally,an adaptive 3D mapping strategy is used to modify the error histogram and embed secret data.Experimental results show that the proposed approach outperforms some of the latest schemes in embedding performance.
    2025,17(2):203-214, DOI: 10.13878/j.cnki.jnuist.20230927001
    Abstract:
    Here,we propose a pruning and optimization approach based on Gradient Weight Pursuit (GWP) to address the overfitting in unsupervised domain,which manifests as significantly lower accuracy on downstream tasks compared to that on training sets.To tackle the overfitting challenge in unsupervised domain,we employ the dense-sparse-dense strategy,focusing on both difference-based and adversarial adaptive methods.First,the network is pretrained intensively to identify crucial connections.Second,during the pruning stage,the optimization algorithm in this paper distinguishes itself from original dense-sparse-dense strategy by jointly considering both weight and gradient information.Specifically,it leverages both weight (i.e.zero-order information) and gradient (i.e.first-order information) to influence pruning process.In the final dense phase,the pruned connections are restored and the dense network is retrained with a reduced learning rate.Finally,the obtained network achieves desirable outcomes in downstream tasks.The experimental results show that the proposed GWP approach can effectively improve the accuracy of downstream tasks,offering a plug-and-play capability compared with original difference-based and adversarial domain adaptation methods.
    2025,17(2):215-226, DOI: 10.13878/j.cnki.jnuist.20230810003
    Abstract:
    As a crucial component of weather systems,3D cloud simulation plays a significant role in various fields such as military and aviation.However,the current mainstream Bounding Volume Hierarchy (BVH) algorithm exhibits inefficient rendering performance when dealing with non-uniform and large-volume clouds.Here,a cloud rendering approach based on optimized BVH algorithm is proposed.The data points from the WRF(Weather Research and Forecasting) grids are used as cloud primitives,and a Z-order Hilbert curve is employed for spatial sorting.The BVH algorithm based on the Surface Area Heuristic (SAH) is optimized by locally optimizing the cloud primitive density,aiming to enhance computational efficiency.To tackle the data access overhead of overlapping BVH nodes,a novel storage structure called Overlapping Node Sets (ONS) is introduced,which reduces the time complexity.The optimized BVH algorithm reduces unnecessary intersection tests between rays and triangle surfaces,and resolves issues related to invalid boundary volume overlaps.Simulation experiments demonstrate that the proposed method achieves a 15.6% improvement in SAH cost compared to similar state-of-the-art algorithms,a 10% improvement in EPO(Effective Partial Overlap),and a reduction of over 100% in construction time.The computational efficiency of the optimized BVH algorithm outperforms similar algorithms in any WRF cloud scenario,indicating its capability for rapid rendering of WRF cloud products.
    2025,17(2):227-234, DOI: 10.13878/j.cnki.jnuist.20230921003
    Abstract:
    Texture extraction,a pivotal task in computer vision,significantly influences the accuracy of texture classification.Traditional single-texture extraction methods often fail to accurately describe the characteristics of various textures.To address this issue,this paper proposes a texture extraction approach based on an Improved Position Local Binary Pattern (IPLBP) and Gabor filters.The proposed IPLBP enhances texture description capability by integrating texture position information into the LBP framework.Specifically,the IPLBP algorithm captures local texture nuances,while Gabor filters extract global texture attributes.Subsequently,these two complementary feature sets are fused and classified using Support Vector Machine (SVM).Experimental results demonstrate that the proposed approach exhibits excellent performance in texture material classification tasks.Notably,compared to traditional LBP algorithms,the IPLBP-Gabor filter approach more accurately discerns the subtle differences between diverse texture features,thereby enhancing texture classification accuracy.
    2025,17(2):235-244, DOI: 10.13878/j.cnki.jnuist.20240617001
    Abstract:
    Here,a bearing fault diagnosis method based on recurrence analysis and Stacking ensemble learning is proposed to effectively extract nonlinear information from rolling bearing signals and improve diagnostic accuracy.Firstly,the nonlinear information in bearing signals is mapped to a two-dimensional recurrence plot through the application of recurrence analysis theory.Convolutional Neural Network (CNN) and Support Vector Machine (SVM) models are established from the perspectives of image recognition and recurrence quantification analysis,respectively.Finally,the Stacking method is employed to integrate these two models,leveraging their respective strengths.Experimental results demonstrate that the proposed method significantly improves the classification accuracy of bearing vibration signals and exhibits excellent stability under varying load conditions,providing a reliable solution for bearing fault diagnosis.
    2025,17(2):245-255, DOI: 10.13878/j.cnki.jnuist.20240512002
    Abstract:
    In the field of Brain-Computer Interface (BCI),the recognition of natural hand movements through electroencephalography (EEG) is crucial for achieving natural and precise human-machine interaction.However,attempts to enhance model generalization ability across different subjects using transfer learning are still rare in studies focusing on natural hand movement paradigms.Here,we investigate three natural hand movement paradigms of grasping,pinching and twisting through EEG experiments,and validate the effectiveness of two transfer learning algorithms,namely CA-MDM(Covariance matrix centroid Alignment-Minimum Distance to Riemannian Mean) and CA-JDA(Covariance matrix centroid Alignment-Joint Distribution Adaptation),on our experimental dataset.The results show that CA-JDA achieves average accuracies of 60.51%±5.78% and 34.89%±4.42% in binary and quadruple classification tasks,respectively,while CA-MDM performs at 63.88%±4.59% and 35.71%±4.84% in the same tasks,highlighting the advantages of Riemannian space-based classifiers in handling covariance features.This study not only confirms the feasibility of transfer learning in natural hand movement paradigms but also aids in reducing calibration time for BCI systems and implementing natural human-machine interaction strategies.
    2025,17(2):256-264, DOI: 10.13878/j.cnki.jnuist.20240506001
    Abstract:
    To address the issues of low search efficiency,long distance,and non-smooth paths in traditional path planning algorithms for autonomous vehicles,this study proposes an improvement by using key nodes of the optimized ant colony algorithm to replace the local target points in the dynamic window approach.Additionally,a target distance evaluation sub-function is incorporated into the dynamic window approach's evaluation function to enhance the efficiency and smoothness of path planning.Furthermore,a path decision-making method is employed to solve the problem of global path failure,enabling the vehicle to avoid obstacles and meet safety requirements of path planning.The improved ant colony algorithm utilizes the positional information of the start and end points to create an uneven initial pheromone distribution,thereby reducing time consumption during the initial search phase.By maintaining the global optimal paths and enhancing the pheromone concentration of excellent local paths,the pheromone update mechanism is optimized to speed up path exploration efficiency.The planned path is further optimized to reduce redundancy in nodes and turning points,thereby shortening path length.Simulation results show that compared to traditional path planning algorithms,the proposed integrated algorithm achieves better performance in terms of distance,smoothness,and convergence,aligning with the safety requirements for autonomous vehicle operation.

DownloadsMore+

    Authors CornerMore+

      Search

      • Search by:
      • Search term:
      • from to

      External Links

      Address:No. 219, Ningliu Road, Nanjing, Jiangsu Province

      Postcode:210044

      Phone:025-58731025