2017, 9(1):1-7. DOI: 10.13878/j.cnki.jnuist.2017.01.001 CSTR:
摘要:近年来,无线能量传输在工业、植入式医疗、个人移动电子设备上得到了广泛的应用,成为当前电子领域的一个研究热点.首先介绍了无线能量传输的研究背景和基本概念,然后引出该领域当前研究最热的磁谐振耦合无线能量传输技术.从磁谐振耦合无线能量传输系统的强耦合区、适耦合区和弱耦合区的角度,对国内外的研究现状进行了总结和分析.最后,给出了磁谐振耦合无线能量传输中有待解决的一些问题.
2017, 9(1):8-14. DOI: 10.13878/j.cnki.jnuist.2017.01.002 CSTR:
摘要:微波集成电路在民用和军用电子中起到至关重要的作用.在微波集成电路领域,高功率的功率放大器为发射机提供足够的信号功率输送到自由空间中,是其不可缺少的关键部件.基于学术研究和商用产品线情况,综述了微波功率放大器芯片的发展情况.首先讨论了各种微波毫米波功率放大器的制造技术,按照半导体器件可以归类为砷化镓、氮化镓、互补金属氧化物半导体和锗化硅等;接着讨论了微波芯片功放的设计技术用以满足高功率、宽带和高效率的指标要求;最后总结了各类微波固态功率放大器的工艺和设计技术,为芯片设计人员提供了全面的设计参考.
2017, 9(1):15-24. DOI: 10.13878/j.cnki.jnuist.2017.01.003 CSTR:
摘要:微波输能(MPT)技术通过微波波束在两点之间进行能量的无线传输,可用于太阳能卫星、近空间飞行器、无线传感器等.整流天线将微波能量捕获并转换为直流,是MPT系统的关键部件.首先,从拓展工作频带、输入功率范围和负载范围等方面对整流天线最新研究进展进行概述,然后分析了其核心器件整流电路的拓扑结构及相应适用场合,对有效设计整流天线的步骤进行综合,最后分析了整流天线技术存在的问题,并指出了MPT技术未来的发展方向.
2017, 9(1):25-33. DOI: 10.13878/j.cnki.jnuist.2017.01.004 CSTR:
摘要:无线能量传输可以摆脱线缆的限制,实现传感器的远距离无线充电、无电池设备的低功率能量收集等.首先介绍了无线能量传输的研究意义和工作原理,接着引出了其接收端的整流电路效率易受到输入功率波动影响的问题,并简要介绍了目前的一些解决方案;在此基础上介绍了3种采用无源网络减小对输入功率敏感的整流电路结构,这些结构能使电路在更宽的功率范围内实现高效率整流;最后展望了微波整流电路未来的一些研究方向.
2017, 9(1):34-45. DOI: 10.13878/j.cnki.jnuist.2017.01.005 CSTR:
摘要:微波输能技术(MPT)是实现远距离能量无线传输的主要方式之一,也是空间太阳能电站系统的核心技术之一.本文主要介绍了微波输能技术的国内外研究现状,并对微波输能技术的系统组成与关键技术做了分析,其中主要针对微波发射子系统与微波接收子系统两大模块进行了详细的讨论.最后,对微波输能系统技术所存在的问题以及未来发展的趋势进行了概括.
2017, 9(1):46-53. DOI: 10.13878/j.cnki.jnuist.2017.01.006 CSTR:
摘要:首先对水下无线电能传输技术进行了分类,然后给出了磁感应式水下无线电能传输的基本结构和工作原理,讨论了该技术的最优工作频率、传输距离、线圈结构选择、涡流损耗与频率分裂现象.随后简要给出了磁谐振式水下无线电能传输技术和电场耦合式水下无线电能传输的研究现状.最后对水下无线电能传输技术有待研究的问题进行了展望.
2017, 9(1):54-63. DOI: 10.13878/j.cnki.jnuist.2017.01.007 CSTR:
摘要:近年来,超材料打破了传统材料或结构的物理极限,为高效率发射天线的发展开辟了崭新的研究空间,获得了愈来愈广泛的关注.首先介绍了超材料的理论和结构研究概况,然后针对几种新型超材料技术在提高平面天线单元效率的研究工作进行了详细介绍和分析,包括非周期超材料技术、超材料作为新型辐射元或低剖面反射板等方面.最后,针对无线能量收集系统对高效率天线阵列的需求,介绍了高次模激励技术和新型低损耗传输线技术,以此降低阵列馈电网络的损耗,从而提高系统的整体效率.
Alessio De ANGELIS , Marco DIONIGI , Paolo CARBONE , Mauro MONGIARDO , 车文荃 , 王清华 , Franco MASTRI , Giuseppina MONTI
2017, 9(1):64-72. DOI: 10.13878/j.cnki.jnuist.2017.01.008 CSTR:
摘要:中程无线功率传输(WPT)可以采用几种不同的方式实现,如通过电感或电容耦合、谐振或非谐振网络实现.本文主要研究了通过感应耦合谐振器实现的WPT链路,而且只着重研究了利用2个谐振器的链路(直接链路)并工作在主谐振频率下的情况.研究结果表明,当工作在主谐振频率下,可以根据网络参数来对传输效率或负载功率进行优化.
Alessio De ANGELIS , Marco DIONIGI , Paolo CARBONE , Mauro MONGIARDO , 车文荃 , 王清华 , Franco MASTRI , Giuseppina MONTI
2017, 9(1):73-81. DOI: 10.13878/j.cnki.jnuist.2017.01.009 CSTR:
摘要:对谐振感应式无线功率传输链路的3种不同的工作方式进行了讨论.第1种工作方式是输出恒定的电压或电流;第2种工作方式采用频率捷变操作,非常适合于不随耦合系数变化的应用场合;第3种工作方式实现负载独立工作并输出恒定的电压或电流.本文讨论并提出了不同情况下的解决方案和相关公式.最后通过实验对提出的理论进行了验证.
2017, 9(1):82-86. DOI: 10.13878/j.cnki.jnuist.2017.01.010 CSTR:
摘要:为了提高磁耦合谐振式无线能量传输系统的效率,本文提出了一种新型的双频无线能量传输的发射和接收装置.在发射端和接收端中,该装置在发射端和接收端中均采用一个馈电线圈对两个谐振线圈馈电;两个谐振线圈工作在不同的频率并通过磁耦合的方式把能量从发射端向接收端同频传输.由于两个谐振线圈均参与了能量传输,所以该传输装置能在较远的距离实现效率较高的双频能量传输.为了验证该理论模型的特性,本文将其设计在PCB板材上并进行仿真和实验测试.仿真和实验结果表明:该双频磁谐振耦合无线能量传输装置的能量传输频率为6.78和13.56 MHz;在传输距离为装置尺寸60%时达到最高效率,其最高效率分别为88.5%和56.7%.
2017, 9(1):87-91. DOI: 10.13878/j.cnki.jnuist.2017.01.011 CSTR:
摘要:整流天线效率对远距离微波能量传输的整体效率至关重要.针对传输系统接收整流端效率提升的需求,提出了一种多界面匹配高效微波整流天线的设计方法.首先对整流天线的效率给出了数学描述,并据此在能量波束入射界面、能量转移界面、能量转换界面、直流合成界面提出了匹配原理和方法.多界面匹配联合就形成了高效整流天线设计方法.最后,根据相关匹配原理进行了实验验证,证实了对波阻抗匹配和输入阻抗匹配的分析.
2017, 9(1):92-96. DOI: 10.13878/j.cnki.jnuist.2017.01.012 CSTR:
摘要:设计了一款针对WiFi信号的环境能量采集系统,工作频率范围从2.4 GHz到2.485 GHz.该系统采用了4倍压整流电路,并设计了从天线到整流电路的宽带匹配电路,提升了能量采集的效率.设计的宽带匹配电路在WiFi工作频率范围内,S11均小于-10 dB.整流电路可将采集信号增加4倍,能有效提高RF-DC转换效率.测试结果表明,所设计的电路达到了设计要求,在-10 dBm的输入功率下,达到了40%的RF-DC转换效率,并使超级电容在30 min内采集到了257 mV的电压.
2017, 9(1):97-100. DOI: 10.13878/j.cnki.jnuist.2017.01.013 CSTR:
摘要:本文提出了一种应用于无线功率传输系统中的新型三频分支线耦合器.通过在传统分支线耦合器的基础上加载1/4波长短路耦合线来实现3个频段的通带.每个通带之间均保持高的隔离度,且通过改变加载耦合线的奇偶模阻抗值,耦合器通带的中心频率可以在较宽频带范围内调节.对一个工作在0.69/1.0/1.4 GHz的平面三频耦合器模型进行了设计与加工,测试结果与理论期望值吻合较好.
2017, 9(1):101-105. DOI: 10.13878/j.cnki.jnuist.2017.01.014 CSTR:
摘要:网络虚拟化技术通过对物理资源的抽象,可以有效解决现有互联网架构中存在的网络结构僵化、可扩展性差等问题.虚拟网络映射问题是指将用户发送的所有虚网请求映射到底层物理网络中,同时还要满足虚网请求中对各个资源的限制要求(如节点计算能力、链路带宽等).从节点负载平衡的角度出发,在基于就近原则的虚网映射算法基础上,引入节点负载平衡的反馈机制,引导各个虚网请求更均匀地映射到底层物理网络中.另外,在k短路径算法机制中引入了当前链路资源占有率作为评价参考标准,这样可以尽可能均匀地分散链路压力.同时,在检验链路资源是否满足虚网请求的过程中,由于优先选中的链路资源占有率低,所以算法映射成功率高,映射耗时更短,虚拟网络映射效率得到了有效提高.
地址:江苏省南京市宁六路219号 邮编:210044
联系电话:025-58731025 E-mail:nxdxb@nuist.edu.cn
南京信息工程大学学报 ® 2024 版权所有 技术支持:北京勤云科技发展有限公司