en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

崔志远,男,硕士生,主要从事二维材料与激光器方面研究.1577288861@qq.com

通讯作者:

陶涛,男,博士,教授,主要从事光功能材料与器件方面的研究.taotao@nuist.edu.cn

中图分类号:O436;TN248

文献标识码:A

DOI:10.13878/j.cnki.jnuist.20230427002

参考文献 1
Bowers M S,Canalias C,Mirov S,et al.Feature issue introduction:advanced solid-state lasers[J].Optical Materials Express,2022,12(6):2283
参考文献 2
Jia X S,Chen Y Q,Liu L,et al.Combined pulse laser:reliable tool for high-quality,high-efficiency material processing[J].Optics & Laser Technology,2022,153:108209
参考文献 3
Kopyeva M S,Filatova S A,Kamynin V A,et al.Ex-vivo exposure on biological tissues in the 2-μm spectral range with an all-fiber continuous-wave holmium laser[J].Photonics,2021,9(1):20
参考文献 4
Xu J,Kong M W,Lin A B,et al.Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication[J].Optics Letters,2017,42(9):1664-1667
参考文献 5
Hansen J N,Hancock S,Prade L,et al.Assessing novel lidar modalities for maximizing coverage of a spaceborne system through the use of diode lasers[J].Remote Sensing,2022,14(10):2426
参考文献 6
Bobretsova Y K,Veselov D A,Voronkova N V,et al.Pulsed laser module based on a high-power semiconductor laser for the spectral range 1 500-1 600 nm[J].Quantum Electronics,2019,49(5):488-492
参考文献 7
Komljenovic T,Liu S T,Norberg E,et al.Control of widely tunable lasers with high-Q resonator as an integral part of the cavity[J].Journal of Lightwave Technology,2017,35(18):3934-3939
参考文献 8
Lin Z L,Xue W Z,Zeng H J,et al.Semiconductor saturable absorber mirror mode-locked Yb:YAP laser[J].Optics Express,2022,30(18):31986-31997
参考文献 9
Qi Y,Bai Z X,Wang Y L,et al.Research progress of all-solid-state passively Q-switched Er:Yb:glass lasers[J].Infrared Physics & Technology,2021,116:103727
参考文献 10
Ma X F,Wang C,Zhang J,et al.Broadband BiOCl nonlinear saturable absorber for watt-level passively Q-switched Yb:LuAG single crystal fiber laser[J].Advanced Optical Materials,2022,10(22):2201087
参考文献 11
Zhang K,Feng M,Yang J X,et al.Niobium tellurium as a novel broadband saturable absorber for pulsed fiber lasers[J].Journal of Materials Chemistry C,2022,10(36):13201-13209
参考文献 12
Pang L H,Zhao M,Zhao Q Y,et al.GaSb film is a saturable absorber for dissipative soliton generation in a fiber laser[J].ACS Applied Materials & Interfaces,2022,14(50):55971-55978
参考文献 13
Beer D,Weber J.Photobleaching of organic laser dyes[J].Optics Communications,1972,5(4):307-309
参考文献 14
严娜,常建华,李寒寒,等.一种基于Cr4+:YAG晶体的紧凑高效被动调Q脉冲激光器[J].电子器件,2018,41(1):25-29.YAN Na,CHANG Jianhua,LI Hanhan,et al.A compact and highly efficient passively Q-switched pulsed laser based on Cr4+:YAG crystal[J].Chinese Journal of Electron Devices,2018,41(1):25-29
参考文献 15
Zhang N,Song Q S,et al.44-fs pulse generation at 2.05 μm from a SESAM mode-locked Tm:GdScO3 laser[J].Optics Letters,2023,48(2):510
参考文献 16
Wang L,Chen W D,Zhao Y G,et al.Sub-50 fs pulse generation from a SESAM mode-locked Tm,Ho-codoped calcium aluminate laser[J].Optics Letters,2021,46(11):2642
参考文献 17
Dai T F,Chang J H,Deng Z L,et al.Effective switching of an all-solid-state mode-locked laser by a graphene modulator[J].Optics Express,2022,30(10):16530
参考文献 18
Haris H,Harun S W,Muhammad A R,et al.Passively Q-switched Erbium-doped and Ytterbium-doped fibre lasers with topological insulator bismuth selenide(Bi2Se3)as saturable absorber[J].Optics & Laser Technology,2017,88:121-127
参考文献 19
Liu W J,Pang L H,Han H N,et al.Tungsten disulphide for ultrashort pulse generation in all-fiber lasers[J].Nanoscale,2017,9(18):5806-5811
参考文献 20
Jin X X,Hu G H,Zhang M,et al.Environmentally stable black phosphorus saturable absorber for ultrafast laser[J].Nanophotonics,2020,9(8):2445-2449
参考文献 21
Wu Q,Jin X,Chen S,et al.MXene-based saturable absorber for femtosecond mode-locked fiber lasers[J].Optics Express,2019,27(7):10159
参考文献 22
Tan W D,Su C Y,Knize R J,et al.Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber[J].Applied Physics Letters,2010,96(3):031106
参考文献 23
Bao Q L,Zhang H,Wang Y,et al.Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J].Advanced Functional Materials,2009,19(19):3077-3083
参考文献 24
Jiang T,Huang D,Cheng J L,et al.Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene[J].Nature Photonics,2018,12(7):430-436
参考文献 25
Wang G Z,Baker-Murray A A,Blau W J.Saturable absorption in 2D nanomaterials and related photonic devices[J].Laser & Photonics Reviews,2019,13(7):1800282
参考文献 26
Zhang H J,Liu C X,Qi X L,et al.Topological insulators in Bi2Se3,Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J].Nature Physics,2009,5(6):438-442
参考文献 27
Lu S B,Zhao C J,Zou Y H,et al.Third order nonlinear optical property of Bi2Se3[J].Optics Express,2013,21(2):2072
参考文献 28
Yu H H,Zhang H,Wang Y C,et al.Topological insulator as an optical modulator for pulsed solid-state lasers[J].Laser & Photonics Reviews,2013,7(6):L77-L83
参考文献 29
Mao D,Wang Y D,Ma C J,et al.WS2 mode-locked ultrafast fiber laser[J].Scientific Reports,2015,5:7965
参考文献 30
Wang K P,Wang J,Fan J T,et al.Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J].ACS Nano,2013,7(10):9260-9267
参考文献 31
Long H,Tao L L,Tang C Y,et al.Tuning nonlinear optical absorption properties of WS2 nanosheets[J].Nanoscale,2015,7(42):17771-17777
参考文献 32
Castellanos-Gomez A,Vicarelli L,Prada E,et al.Isolation and characterization of few-layer black phosphorus[J].2D Materials,2014,1(2):025001
参考文献 33
Wang Y W,Huang G H,Mu H R,et al.Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension[J].Applied Physics Letters,2015,107(9):091905
参考文献 34
刘邦政,李双成,吴政阳,等.基于黑磷可饱和吸收体的被动调Q Tm:YAP激光器[J].激光与光电子学进展,2023,60(1):233-238.LIU Bangzheng,LI Shuangcheng,WU Zhengyang,et al.Passively Q-switched operation of Tm:YAP laser with black phosphorus saturable absorber[J].Laser & Optoelectronics Progress,2023,60(1):233-238
参考文献 35
Lu S B,Miao L L,Guo Z N,et al.Broadband nonlinear optical response in multi-layer black phosphorus:an emerging infrared and mid-infrared optical material[J].Optics Express,2015,23(9):11183
参考文献 36
Chu Z Z,Liu J E,Guo Z N,et al.2 μm passively Q-switched laser based on black phosphorus[J].Optical Materials Express,2016,6(7):2374
参考文献 37
Zhou L,Kang J L,Dong Y L,et al.Solvent-stabilized few-layer violet phosphorus and its ultrafast nonlinear optics[J].Nano Research,2023,16(4):5843-5849
参考文献 38
Naguib M,Kurtoglu M,Presser V,et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J].Advanced Materials,2011,23(37):4248-4253
参考文献 39
Kawai K,Fujita M,Iizuka R,et al.Influence of surface termination groups on electrochemical charge storage of MXene electrodes[J].2D Materials,2023,10(1):014012
参考文献 40
Jiang X T,Liu S X,Liang W Y,et al.Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T=F,O,or OH)[J].Laser & Photonics Reviews,2018,12(2):1700229
参考文献 41
Zhu Y,Sun X Q,Tang Y L,et al.Two-dimensional materials for light emitting applications:achievement,challenge and future perspectives[J].Nano Research,2021,14(6):1912-1936
参考文献 42
Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669
参考文献 43
Chen Y,Jiang G B,Chen S Q,et al.Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J].Optics Express,2015,23(10):12823
参考文献 44
Yin X L,Li Y W,Meng H,et al.Surface functionalization of bulk MoS2 sheets for efficient liquid phase exfoliation in polar micromolecular solvents[J].Applied Surface Science,2019,486:362-370
参考文献 45
Cai Z Y,Liu B L,Zou X L,et al.Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures[J].Chemical Reviews,2018,118(13):6091-6133
参考文献 46
Jiao L,Wang Y H,Zhi Y S,et al.Fabrication and characterization of two-dimensional layered MoS2 thin films by pulsed laser deposition[J].Advances in Condensed Matter Physics,2018,2018:1-5
参考文献 47
Rathore J,Mahapatra S.Formation of antimonene nanoribbons by molecular beam epitaxy[J].2D Materials,2020,7(4):045003
参考文献 48
Öper M,Yorulmaz U,Sevik C,et al.Controlled CVD growth of ultrathin Mo2C(MXene)flakes[J].Journal of Applied Physics,2022,131(2):025304
参考文献 49
Lu S B,Ge Y Q,Sun Z B,et al.Ultrafast nonlinear absorption and nonlinear refraction in few-layer oxidized black phosphorus[J].Photonics Research,2016,4(6):286
参考文献 50
Yan K,Fu L,Peng H L,et al.Designed CVD growth of graphene via process engineering[J].Accounts of Chemical Research,2013,46(10):2263-2274
参考文献 51
Zuo Y G,Yu W T,Liu C,et al.Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity[J].Nature Nanotechnology,2020,15(12):987-991
参考文献 52
Zhou Y,Zhang Z X,Jiang W H,et al.A passively mode-locked thulium-doped fiber laser based on a D-shaped fiber deposited with PbS nanoparticles[J].Journal of Materials Chemistry C,2019,7(36):11215-11219
参考文献 53
Jafry A A A,Krishnan G,Kasim N,et al.MXene Ti3C2Tx as a passive Q-switcher for erbium-doped fiber laser[J].Optical Fiber Technology,2020,58:102289
参考文献 54
Wang F,Qu Y H,Lan D F,et al.Carbon nano-onions as saturable absorbers for pulsed fiber lasers[J].ACS Applied Nano Materials,2022,5(8):11400-11406
参考文献 55
Jiang X T,Li W J,Hai T,et al.Inkjet-printed MXene micro-scale devices for integrated broadband ultrafast photonics[J].NPJ 2D Materials and Applications,2019,3:34
参考文献 56
Yang H Z,Feng X B,Wang Q A,et al.Giant two-photon absorption in bilayer graphene[J].Nano Letters,2011,11(7):2622-2627
参考文献 57
Sheik-Bahae M,Said A A,Wei T H,et al.Sensitive measurement of optical nonlinearities using a single beam[J].IEEE Journal of Quantum Electronics,1990,26(4):760-769
参考文献 58
Wang J,Hernandez Y,Lotya M,et al.Broadband nonlinear optical response of graphene dispersions[J].Advanced Materials,2009,21(23):2430-2435
参考文献 59
Zhang J,Jiang T A,Zhou T,et al.Saturated absorption of different layered Bi2Se3 films in the resonance zone[J].Photonics Research,2018,6(10):C8
参考文献 60
Chang J H,Li H H,Yang Z B,et al.Efficient and compact Q-switched green laser using graphene oxide as saturable absorber[J].Optics & Laser Technology,2018,98:134-138
参考文献 61
丁蓉,常建华,孔春霞,等.基于石墨烯量子点的被动调QNd:YVO4激光器[J].发光学报,2020,41(1):63-70.DING Rong,CHANG Jianhua,KONG Chunxia,et al.Passively Q-switched Nd:YVO4 laser based on graphene quantum dots[J].Chinese Journal of Luminescence,2020,41(1):63-70
参考文献 62
Li Y,Li H,Wu S W,et al.Tuning the optical nonlinearity of graphene[J].The Journal of Chemical Physics,2020,153(8):080903
参考文献 63
Dai T F,Liu X,Lei W,et al.Passively Q-switched Nd:YVO4 laser based on silver-plated graphene saturable absorber[C]//2019 3rd International Conference on Circuits,System and Simulation(ICCSS).June 13-15,2019,Nanjing,China.IEEE,2019:46-49
参考文献 64
Dai T F,Chang J H,Li H X,et al.Printable graphene-insulator-semiconductor(GIS)heterostructures for active control of infrared Q-switched laser[J].Advanced Optical Materials,2021,9(10):2001502
参考文献 65
Dai R,Chang J H,Li Y Y,et al.Performance enhancement of passively Q-switched Nd:YVO4 laser using graphene-molybdenum disulphide heterojunction as a saturable absorber[J].Optics & Laser Technology,2019,117:265-271
参考文献 66
刘海洋,常建华,冯潇潇,等.基于石墨烯量子点与二硫化钼的双被动调Q激光器研究[J].中国激光,2020,47(11):26-32.LIU Haiyang,CHANG Jianhua,FENG Xiaoxiao,et al.Research on double passively Q-switched laser based on graphene quantum dots and molybdenum disulfide[J].Chinese Journal of Lasers,2020,47(11):26-32
参考文献 67
Huang H F,Wang J W,Xu N,et al.Ti2CTx MXene as a saturable absorber for passively Q-switched solid-state lasers[J].Polymers,2021,13(2):247
参考文献 68
Ma X F,Xue N,Wang T,et al.Passively CI-switched single crystal fiber pulsed laser at 1.05 μm with T3C2Tx as the saturable absorber[J].Optics Express,2022,30(25):44617-44627
参考文献 69
Wang J A,Li G Y,Liu S C,et al.Nonlinear absorption response of zirconium carbide films[J].ACS Applied Materials & Interfaces,2023,15(2):3317-3324
参考文献 70
杨闵皓,常建华,石少杭,等.新型二硫化钼可饱和吸收体的制备及其超快特性研究[J].中国激光,2018,45(10):59-66.YANG Minhao,CHANG Jianhua,SHI Shaohang,et al.Preparation and study on the ultrafast characteristics of a new type of molybdenum disulfide saturable absorber[J].Chinese Journal of Lasers,2018,45(10):59-66
参考文献 71
Shi S H,Chang J H,Yang Z B,et al.Passively mode-locked Nd:YVO4/PPLN green laser using molybdenum disulfide as a saturable absorber[J].Optical Engineering,2018,57(9):096110
参考文献 72
Yang Z X,Yang Q,Ren X H,et al.Passively mode-locked red Pr:LiYF4 laser based on a two-dimensional palladium diselenide saturable absorber[J].Optics Express,2022,30(2):2900
参考文献 73
Yan B Z,Guo H W,He G B,et al.Ta2NiSe5 nanosheets as a novel broadband saturable absorber for solid-state pulse laser generation[J].Science China Materials,2021,64(6):1468-1476
参考文献 74
Yan B Z,Li G R,Shi B N,et al.2D tellurene/black phosphorus heterojunctions based broadband nonlinear saturable absorber[J].Nanophotonics,2020,9(8):2593-2602
参考文献 75
Cai E L,Xu J Y,Xia Y Y,et al.The nonlinear optical properties of zirconium pentatelluride and its application in ultrafast solid-state lasers[J].Optics & Laser Technology,2022,150:108003
参考文献 76
Hu Y Y,Yang W L,Qi T Q,et al.Nb2AlC as saturable absorber for a passively mode-locked operation of Tm:YLF laser[J].Optics & Laser Technology,2023,161:109116
参考文献 77
Liang Y N,Hu W J,Yuan X,et al.Switchable nonlinear optical absorption of metal-organic frameworks[J].Advanced Optical Materials,2022,10(18):2200779
参考文献 78
Gao Q,Ma X Z,Zhang W S,et al.A passively mode-locked of Tm:YAP laser with a zeolitic imidazolate frameworks-8(ZIF-8)saturable absorber[J].Optik,2022,271:170133
目录contents

    摘要

    二维材料具有低损耗、超快载流子响应以及宽波段的非线性吸收等特性,并且其层状结构更适合与光电器件结合,在超快光子学和光电器件领域产生了一系列的创新应用.类石墨烯材料已成功在可见、近红外和中远红外波段产生超短脉冲激光.本文综述了基于二维材料的可饱和吸收体在固态激光器中实现调Q以及锁模操作的最新研究进展.首先,介绍了基于二维材料的可饱和吸收体制备方法、可饱和吸收体的吸收机理及非线性吸收特性的测量手段,并总结了基于二维可饱和吸收体的固态激光器在工作波长、输出功率、脉冲宽度等方面的性能,最后对二维材料在先进激光器领域的发展趋势进行了展望.

    Abstract

    Two-dimensional (2D) materials have the characteristics of low loss,ultrafast carrier response,and wideband nonlinear saturable absorption,which have originated a range of innovative applications in photonics and photoelectric device owing to their advantages of layered structures.Graphene-like materials have recently been utilized for short and ultrashort pulsed laser generation in visible,near-infrared,and mid-infrared wavelength ranges.This article reviews the recent progress of 2D materials as saturable absorbers for Q-switched and mode-locked solid-state lasers.First,the preparation methods of 2D materials as saturable absorbers,the saturable absorption principle,and methods for measuring nonlinear absorption properties are introduced and explained theoretically.Second,the solid-state pulsed laser is summarized based on performance of 2D saturable absorbers in operating wavelength,output power,and pulse width.Finally,the development trends of two-dimensional saturable absorbers in solid-state lasers are prospected.

  • 0 引言

  • 固态激光器具有脉宽窄、峰值功率高、脉冲能量大等特性,在光学材料[1]、材料加工[2]、生物医疗[3]、光通信[4]和光探测[5]等领域发挥着重要作用,这些领域对于超短脉冲的高输出性能的需求也在不断增长.随着半导体激光技术的不断发展[6-7],以半导体激光器作为泵浦源的固态激光器具有体积小、效率高、性能稳定等特点,适合用于产生高性能的短脉冲激光.一般通过调节谐振腔的品质因数(调Q技术)和引入固定的相位关系(锁模技术)来产生短脉冲激光,与主动式调制产生脉冲的调Q/锁模技术相比[8-9],将具有非线性吸收特性的光学器件作为可饱和吸收体(Saturable Absorber,SA)直接插入激光腔内的被动式调制手段具有结构简单、脉冲能量高、性能可靠等优势[10-12]

  • SA是一种利用非线性光学特性产生超短激光的光调制器件,其调制作用为当入射光强大于其饱和阈值时,光学损耗由大变小,光透过率变大.影响此类光调制器件特性的主要参数有:光吸收波段、动态响应时间、饱和光强、光调制深度、损伤阈值等.增益介质决定了激光器系统的中心工作波段,故SA的光吸收波段要与增益介质的工作波段相匹配才能进行工作.动态响应时间指的是SA从饱和吸收状态恢复为线性吸收状态所需的时间,其相对于激光脉宽的关系可分为快SA和慢SA.慢SA会限制激光器系统的工作波长,不利于产生高重复频率的脉冲,在较高功率下工作时,由于慢SA对脉冲前后沿的调制不同,还会导致脉冲的不稳定.饱和光强影响激光器系统的被动工作阈值,低饱和强度会更容易实现自启动锁模,但输出脉冲较小.较大的调制深度有利于锁模的建立和稳定,并且可以窄化脉冲,其主要取决于构建SA的材料、厚度以及器件结构等,但过大的调制深度会加剧非饱和损耗.SA作为光学器件,较低的线性损耗和较高的损伤阈值是保证其产生超短脉冲激光的基本条件.

  • SA包含有机染料[13]、掺杂过渡金属离子晶体[14]、半导体可饱和吸收镜(Semiconductor Saturable Absorber Mirror,SESAM)[15]等.由于有机染料的有毒性和较差的热稳定性、掺杂过渡金属离子晶体的制造复杂性和较短的使用寿命,目前应用已经较少,而SESAM的工作状态稳定,损耗较小,已经广泛应用于800~1 500 nm的固态锁模激光器中[16],但仍有恢复时间长、工作波长固定、制造工艺复杂和损伤阈值较低等局限性.因此,继续探索具备宽波段调制、动态响应时间快、合适饱和强度和调制深度、高稳定性等优点的新型SA具有重要的价值和实际意义.

  • 近年来,石墨烯[17]、拓扑绝缘体[18](Topological Insulators,TIs)、过渡金属硫化物[19](Transition Metal Dichalcogenides,TMDs)、黑磷[20](Black Phosphorus,BP)、MXene [21]等一系列二维材料展现了独特优异的机械、热学、电学和光学等特性,在相关研究领域具备应用潜力,特别在先进激光器件领域中,类石墨烯材料展现了宽范围的工作波段和适合产生超短脉冲的特性.本文介绍了新型二维材料的光电特性和可饱和吸收器件的制备方法,阐明了非线性吸收机理及非线性光学特性测量手段,并结合近年来二维可饱和吸收体在固态激光器中的应用研究进展,对被动调Q/锁模激光器在工作波长、输出功率、脉冲宽度等方面的性能进行了总结,最后对二维可饱和吸收体的发展趋势进行了展望.

  • 1 基于二维材料可饱和吸收体的制备

  • 1.1 二维材料的光电特性

  • 石墨烯是一种以碳原子sp2杂化构成六边形晶格平面结构堆叠起来的层状材料,有许多优异的光电特性:其零带隙的结构可实现从可见光到红外波段的宽波段响应; 其优异的热传导特性表明了能够在高能量的激光器中进行工作的潜力; 其在皮秒数量级的带内弛豫时间,有利于超短脉冲的产生和锁模操作的自启动[22].2009年,石墨烯首次被制备为可饱和吸收体[23],并成功实现锁模操作,证实了其在光电应用方面的潜力[24].受石墨烯的影响,一些具有非线性光学响应的类石墨烯材料以及其他纳米材料相继被用于不同波段脉冲的调制,其结构示意图和覆盖的光谱区域如图1所示.

  • 拓扑绝缘体(TIs)是一类带隙具有特殊性质的材料,它体态下具有约为0.16~0.3 eV的带隙宽度,但其表面态则是具有狄拉克点的零带隙状态[26].TIs的带隙特性有助于制备具有宽波段吸收的可饱和吸收体[27],例如利用Bi2Se3的窄带隙结构和较大的三阶非线性光学响应实现了固态激光器的超短脉冲调制[28],并且可饱和吸收体表面未观察到明显的热损伤,表明TIs具有产生更大能量脉冲的潜力.

  • 过渡金属硫化物(TMDs)具有和石墨烯相似的二维层状结构,每一层由过渡金属原子M与硫族原子X通过共价键结合,层间通过弱范德华力结合,主要代表有MoS2和WS2[29-30].不同于石墨烯的零带隙,TMDs纳米片的带隙宽度约为1.0~2.5 eV,具有半导体性质,且其带隙大小随层数减少而增加,随着体相材料剥离至单层时,其带隙类型会从间接带隙转换为直接带隙[31],能够进一步提高光发射效率.

  • 黑磷(BP)是磷室温下最具有热力稳定性的同素异形体,整体结构与石墨烯类似,其层状微观形貌是褶皱弯曲的,具有约为0.3~2 eV的带隙范围弥补了石墨烯和TMDs之间的带隙空缺,为二维可饱和吸收体的选择提供了更多可能.此外,BP和TMDs的带隙特性类似,带隙宽度和材料层数之间呈反比关系[32],但BP的带隙类型与层数无关,为直接带隙,且弛豫时间在飞秒数量级[33],是一种快速可饱和吸收体,意味着BP具有非常好的短脉冲调制潜力[34-35].Chu等[36]在2016年首次将BP应用在2 μm的全固态被动调Q激光器中.此外,磷烯中的紫磷也表现出了超快的载流子动力学和非线性吸收特性[37]

  • 图1 二维材料覆盖的光谱区域a.石墨烯; b.单层TMDs; c.磷烯; d.砷烯; e.锑烯; f.二维氮化硼; g.MXene; h.铋烯[25]

  • Fig.1 Spectral regions covered by 2D materials a.graphene; b.monolayer TMDs; c.phosphorene; d.arsenene; e.antimonene; f.2D BN; g.MXene; h.bismuthene[25]

  • MXene是一类由过渡金属碳化物或氮化物构成的类石墨烯层状材料,可通过刻蚀MAX相中的金属层获得,其化学式表示为Mn+1XnTxn代表化学计量数(1,2,3,···),M代表过渡金属(Sc、Ti、Zr等),X为C或N,Tx表示MXene薄片表面的化学官能团,通常为F、 O或OH[38],不同的过渡金属元素和表面官能团使MXene具有高度灵活的光电特性可调谐能力[39].Ti3C2Tx作为首个制备出来的MXene,在近中红外波段内具有良好的非线性光学响应[40],其有效非线性系数与石墨烯类似,比TMDs和BP高出2个数量级,并且具有较大的调制深度和较低的线性损耗,表明MXene在宽频带光信号处理方面的巨大潜力.

  • 1.2 可饱和吸收体的制备

  • 可饱和吸收体的调制能力与二维材料的性能和材料沉积方法相关.二维材料的层间为微弱的范德华力,为制备成少层或单层材料提供了可能,且少层或单层结构的材料更容易产生脉冲激光.二维材料性能很大程度上取决于其制备工艺[41],从制备逻辑上可分为自上而下的剥离工艺和自下而上的生长工艺.

  • 自上而下法是对块体材料进行剥离,包括机械剥离(ME)和液相剥离(LPE)等,通过物理或化学反应打破层间微弱的范德华力来制备少层或单层材料.单层石墨烯的首次制备是通过机械剥离法实现的[42],之后用类似的方法还实现了对TMDs和BP等二维材料的剥离,并于2015年首次将通过机械剥离法制备的BP成功应用于锁模激光器中[43].LPE也是一种物理剥离过程,非常适用于制备少层MoS2纳米片[44],通过加入不同的分散剂或表面活性剂,利用高功率的超声产生气泡来打破块体二维材料层与层间的范德华力,之后通过高速离心去除未剥离的部分,在离心液上层中收集少层或单层材料,但需要注意过长时间的超声会使材料表面形成各种缺陷,会对其最终性能有所影响.

  • 自下而上法利用物理或化学反应在分子水平上生长纳米材料,如化学气相沉积(CVD)[45]中的等离子增强化学气相淀积(PECVD)、物理气相沉积(PVD)中的脉冲激光沉积法(PLD)[46]以及分子束外延(MBE)[47]等.目前,CVD工艺可以制备高质量的石墨烯薄膜,如图2a所示:前驱体类型、气体流速、生长温度和体系压力等因素都对生长材料的质量有直接影响.一般来说,石墨烯的生长过程可简要分为4个步骤,如图2b中的路线1所示:前驱体气体吸附于金属催化剂表面后被催化分解,分解后的碳原子在金属表面进行扩散且部分溶解于金属内部,溶解的碳原子会在金属表面析出,析出的碳原子在金属表面成核并继续生长.还需要注意的是,基底类型的选择对材料的生长过程尤其重要,如图2b中的路线2所示:当选择碳溶量极低的Cu作为石墨烯生长的基底时,在前驱体气体被催化分解后,碳原子会直接在金属表面扩散而形成石墨烯,不存在碳原子的溶解和析出过程.与石墨烯薄膜的生长过程类似,MXene也能够通过CVD工艺进行制备[48].与LPE相比,CVD制备二维材料的缺陷和层数更可控.在不同的制备方法中,都需要注意保护具有易氧化特性的材料,如BP和MXene等[49],需要相应的保护措施.

  • 二维材料与激光器件的有效结合是实现脉冲激光的必备条件,其中材料的浓度和沉积厚度是影响脉冲特性的重要因素[51].在全固态激光器中,一般为透射式结构,通常采用旋涂的方式,将一定浓度的材料均匀沉积在石英或其他类型基底上,通过合适的温度进行干燥后制备为可饱和吸收器件,后续直接插入谐振腔中实现调制功能.在光纤激光器中常用的手段有光沉积[52]、薄膜转移[53]、侧抛光纤[54]等.光沉积法将光纤跳线接头放入材料的分散液中,通过改变光源功率和沉积时间来调控光纤跳线接头上附着材料的厚度.薄膜转移通过将二维材料混合聚乙烯醇(PVA)制备为均匀薄膜后,将薄膜裁剪为合适的大小转移在光纤跳线头之间,构成“三明治”结构实现可饱和吸收效果.侧抛光纤主要利用倏逝波原理,即光纤中的传输光通过抛磨区与二维材料进行相互作用后再次返回光纤中继续传输,通过将二维材料沉积在侧面抛磨的光纤上并熔接在激光谐振腔中即可实现被动调Q以及锁模操作.Jiang等[55]通过喷墨印刷手段将MXene沉积在侧抛光纤上制备为可饱和吸收体,成功产生了从近红外到中红外波段的宽频超快激光脉冲.侧抛光纤可以通过改变侧抛深度和长度等来控制倏逝波和沉积材料间的相互作用,从而调节材料对光的调制效果,并且采用侧抛光纤能够很好地降低热效应带来的负面影响,从而一定程度提高二维材料的损伤阈值,增加可饱和吸收体的工作寿命,更适合产生高能量的脉冲.

  • 图2 基于CVD的石墨烯制备过程 a.设计生长石墨烯的CVD系统; b.CVD工艺的基本步骤; c.工艺过程示意图[50]

  • Fig.2 Preparation process of graphene based on CVD a.a CVD system for designed growth of graphene; b.elementary steps involved in the CVD process; c.schematic illustration for process engineering[50]

  • 对于提升二维材料在固态激光器中的应用效果而言,一方面,需要如等离子增强化学气相淀积(PECVD)、脉冲激光沉积法(PLD)等薄膜材料制备工艺的支持,另一方面还要实现材料与激光器件的有效耦合,需要探究制备透射式可饱和吸收体的最佳材料浓度和沉积厚度,以及如何减少激光腔内的损耗等问题.通过上述两方面的优化后,即可制备出性能优良的可饱和吸收体,更适用于固态脉冲激光器产生被动锁模/调Q脉冲.

  • 2 二维可饱和吸收体的非线性光学特性

  • 2.1 非线性吸收机理

  • 非线性吸收主要有可饱和吸收和反饱和吸收.可饱和吸收表现出材料的透过率随光强增强而逐级增大直至稳定的特性,反饱和吸收则表现出透射率随光强增大而减小的特性.如图3a所示:当以较弱的光对材料表面进行照射时,会对光的吸收呈线性,大部分光子被吸收,透射率很低; 当以较强光进行照射时,对于光的吸收呈非线性,材料中基态电子吸收光子能量跃迁至激发态,激发后能量降低的热电子会根据费米分布占据从低到高的能级,同时会有部分电子弛豫到基态,但由于基态电子跃迁速率要远高于激发态电子弛豫速率,因此总体来看,基态电子逐渐减少而激发态电子增多.根据泡利不相容原理,当基态电子被抽空而激发态的子带被占满时,无法再吸收入射光子,此时达到吸收饱和状态,如图3b所示,光子可以直接通过材料,透射率很高.

  • 图3 可饱和吸收机理 a.弱入射光; b.强入射光[25]

  • Fig.3 Saturable absorption principle a.low-intensity incident laser beam; b.high-intensity incident laser beam[25]

  • 一般来说,可饱和吸收由单光子吸收过程主导,故在分析可饱和吸收过程时,可忽略多光子吸收和自由载流子吸收这两个过程,根据文献[56]推导,总吸收系数α可以表示为

  • α=α01+I/Is
    (1)
  • 式中:α0线性吸收系数; I为入射光强; Is为饱和光强.饱和光强的值与可饱和吸收体的类型相关.可饱和吸收体插入谐振腔后,随着入射光强大于饱和光强时,总吸收系数α将趋近于零,可饱和吸收体相对于谐振腔内的光变为“透明”,有助于脉冲激光的产生.

  • 2.2 非线性吸收特性测量

  • 高强度光照射具有非线性光学特性的材料表面时,会产生振幅和空间相位上的调制.故通过测量透过介质后光束的振幅和空间相位的变化情况即可确定其非线性吸收率和非线性折射率,这可以通过Z扫描(Z-scan)进行实现[57]Z扫描有开孔和闭孔两种方式:开孔Z扫描可用来测量材料的非线性吸收特性,包含可饱和吸收和反饱和吸收特性; 闭孔Z扫描反映样品的非线性折射特性.Z扫描装置如图4a所示.开孔Z扫描测试时保持入射光功率不变,将样品放置在Z轴上进行移动,当离Z轴原点较远时,样品受光面积较大,入射光功率密度低,样品表现出线性吸收特性,透过率基本不变化; 当样品离Z轴原点越来越近时,其受光面积越来越小,入射光功率密度变大,导致样品表现非线性吸收特性.随着样品在Z轴上位置发生移动,样品表面入射光功率密度持续变化,导致透射率的发生改变.根据位置以及透射率的变化,通过公式进行拟合[58]后,可以得到材料的非线性吸收系数和调制深度等参数.

  • 对于不适合频繁进行移动的较薄或小尺寸样品,利用双臂测量装置[59]来测量非线性吸收特性更为合适.如图4b所示,不同于Z扫描中移动样品来改变入射光功率密度,双臂测量不需要移动样品,其通过连续可调衰减器实现对入射光功率的控制,避免了Z扫描中多次移动样品所产生的误差,更适合对较薄的二维可饱和吸收体进行测量.

  • 3 二维可饱和吸收体在固态激光器中的应用

  • 3.1 调Q技术

  • 调Q技术通过对脉冲序列的调制,使得脉宽和幅度大小不同的短脉冲在很短的时间范围内集中释放出去,能够产生脉宽在微秒或纳秒量级的高峰值功率脉冲.近年来,基于二维材料的被动调Q固态激光器的研究越来丰富,除了具有代表性的石墨烯以外,Chang等[60]在2018年采用改进的Hummers法成功制备了一种新型氧化石墨烯(GO)材料,并以多层氧化石墨烯作为SA,应用于基于Nd:YVO4/PPLN的激光器中,成功在532.1 nm处产生被动调Q绿色脉冲光,图5a显示了无SA时的连续波(CW)和有SA时的调Q脉冲输出功率随泵浦功率的变化曲线,当泵浦功率为5.16 W时,最大平均输出功率为536 mW,光转换效率为10.30%,图5b显示了调Q脉冲的脉宽和重复频率随泵浦功率的变化特性,随着泵浦功率的增加,重复频率最高可达71.4 kHz,最短脉冲激光宽度为98 ns,证明了GO应用于光子器件、光开关等领域的潜力.

  • 图4 非线性吸收特性测量 a.Z扫描装置; b.双臂测量装置

  • Fig.4 Measurement of nonlinear absorption properties a.Z-scan measurement setup; b.two-arm measurement setup

  • 材料的尺寸是影响脉冲特性的因素之一,具有更小尺寸的石墨烯也被证明具有产生脉冲的潜力.2020年,丁蓉等[61]采用水热法制备了石墨烯量子点(GQDs),并作为SA应用于Nd:YVO4激光器,成功实现了1 063.5 nm处的被动调Q激光输出,其脉冲特性如图6所示:在吸收泵浦功率达到9.12 W时,得到重复频率为1.64 MHz、脉宽为200 ns的脉冲,对应的脉冲能量可以达到0.51 μJ,峰值功率达到2.5 W,经过计算,光转换效率为11.3%.

  • 随着对非线性光学的更深一步的研究,发现由于费米能级能量和载流子密度的改变,石墨烯的非线性吸收特性可以通过改变栅极电压来控制[62].2019年,Dai等[63]研究了一种基于镀银石墨烯作为SA的被动调Q固态脉冲激光器,他们将镀银电极置于单层石墨烯上,利用电流来增强石墨烯的载流子迁移率,从而改善石墨烯的饱和吸收特性,并成功在1 064.1 nm波长处实现出光,当泵浦功率从2.2~13.2 W之间变化时,脉冲重复频率处于102~1 290 kHz之间,脉冲持续时间从900 ns压缩到280 ns,最大输出功率为509.2 mW,证明了镀银石墨烯在脉宽更窄的被动调Q Nd:YVO4激光器中的性能优于未通电石墨烯.2021年,Dai等[64]为了进一步实现脉冲激光器的可控性,研究了一种基于喷墨印刷的石墨烯-绝缘体-半导体(GIS)异质结构,具有优良的饱和吸收性质,并成功应用于红外调Q激光器.在极低的电流(≈10 pA)和功率(<0.5 nW)条件下,该异质结构具有高度可控的脉冲宽度(1 000~360 ns)和重复频率,此工作有望进一步促进高输出功率(120~530 mW)可控激光器的发展.

  • 图5 绿色激光输出特性 a.输出功率随泵浦功率的变化; b.脉宽和重复频率随泵浦功率的变化[60]

  • Fig.5 Output characteristics of the green laser a.variations of output power with the absorbed pump power; b.variations of the pulse width and repetition rate with absorbed pump power[60]

  • 图6 入射泵浦功率为9.12 W的被动调Q激光器 a.脉冲序列; b.时序脉冲形状[61]

  • Fig.6 Passively Q-switched lasers with incident pump power of 9.12 W a.pulses trains; b.temporal pulse shapes[61]

  • 二维材料的层状结构为其制备异质结提供了可能性,异质结构能够实现不同材料间的优势互补,进一步提高材料性能.2019年,Dai等[65]研究并制备了石墨烯/MoS2异质结材料,其透射光谱如图7a所示:相比于石墨烯和MoS2材料,异质结材料的透射率较低,这可能是由于异质结构增加了材料厚度,从而降低了材料的透射率.后续还分别对3种材料进行了Z扫描测试,异质结材料的非线性吸收特性如图7d所示:异质结材料的饱和光强为11.1 MW/cm2,且高达15.01%的调制深度远大于石墨烯和MoS2的调制深度,并利用该异质结材料成功在基于Nd:YVO4的被动调Q激光器产生了脉冲宽度为180 ns,重复频率为640 kHz的稳定脉冲,该类异质结与单独石墨烯和MoS2相比表现出了更适合产生超短脉冲的潜力.

  • 相较于单可饱和吸收体调Q激光器,双可饱和吸收体调Q激光器的输出脉冲的脉宽、脉冲形状以及其他输出性能方面能够进一步得到调控.2020年,刘海洋等[66]设计了一种基于石墨烯量子点与二硫化钼的1 064 nm双被动调Q激光器.激光器系统如图8所示:泵浦功率达到12.9 W时,实验测到的调Q激光脉冲宽度为180 ns,重复频率为1 085 kHz,信噪比为44 dB,平均输出功率为595 mW.

  • 图7 石墨烯、MoS2和石墨烯-MoS2 SA的性质 a.透射光谱; b—d.非线性透射率及其拟合曲线[65]

  • Fig.7 Properties of graphene, MoS2 and graphene-MoS2 SAs a.transmissivity spectra; b-d.nonlinear transmission and corresponding fitting curve[65]

  • 图8 基于GQDs-SA和MoS2-SA的双被动调Q激光器实验装置[66]

  • Fig.8 Double passively Q-switched laser experimental device based on GQDs-SA &MoS2-SA[66]

  • 一些新兴材料也表现出了的产生脉冲潜力,如:2021年,Huang等[67]首次将Ti2CTx MXene用于被动调Q固态激光器,在1.06 μm附近获得稳定的被动Q开关操作,在4.5 W的泵浦功率下,产生了脉冲持续时间为163 ns和260 kHz的重复频率,其对应的单脉冲能量和峰值脉冲功率分别为3.638 μJ和22.3 W,激光器的光转换效率达到了25.5%; 2022年,Ma等[68]将Ti3C2Tx MXene可饱和吸收体应用在Yb:LuAG单晶光纤脉冲激光器中,在1 050 nm处实现了被动调Q输出,平均功率、脉冲宽度和重复频率分别为1.989 W、149.6 ns和365.44 kHz,其平均功率是目前此类被动锁模激光器中最高的.相比于Ti3C2Tx MXene易氧化特性,ZrC在空气中更稳定,不易氧化.Wang等[69]通过磁控溅射沉积技术(MSD)在石英基底上制备了ZrC薄膜,并将其用于被动调Q Nd:YAG 激光器中,成功产生了最短脉冲宽度为78 ns的脉冲.表1总结了近年来不同类型二维材料的被动调Q固态激光器的性能.

  • 3.2 锁模技术

  • 锁模技术通过对激光谐振腔内各纵模的相位进行锁定,从而相干叠加形成超短脉冲激光,相比于调Q技术,能够产生脉宽在皮秒以及飞秒量级的超短脉冲.2018年,杨闵皓等[70]采用锂离子-插层法制备MoS2纳米片溶液,将其置于优化过的W型全固态激光器系统中,实现了基于MoS2 SA的1 063.9 nm皮秒锁模激光稳定输出,获得了重复频率为87 MHz且最短脉宽为5 ps的脉冲激光,泵浦功率达到6.86 W时,脉冲平均输出功率为894 mW,单脉冲能量及峰值功率分别为10.28 nJ和2.056 kW,光转换效率为13.03%.在可见光波段,Shi等[71]于2018年成功研制了一种基于MoS2的被动锁模Nd:YVO4/PPLN绿色激光器,可在532.1 nm处实现稳定出光,在泵浦功率为6.67 W时,脉宽为3.5 ps,脉冲重复频率为87.2 MHz,泵浦功率增加至8.62 W时,能够得到最大平均输出功率为757 mW,光转换效率为8.8%,证明了MoS2在超快固态激光器中应用潜力.2022年,Yang等[72]首次报道了一种基于PdSe2可饱和吸收体的被动锁模 Pr:LiYF4红光激光器,成功在639.5 nm处获得了短至35 ps的超短脉冲激光.

  • 相比于二维二元硫化物,二维三元硫化物由于第三元素的协同作用和化学计量变化而具有新颖的化学和物理性质.Yan等[73]通过LPE方法成功地制备了高质量的二维Ta2NiSe5纳米片,如图9a—c所示,他们利用开孔Z扫描方法分别研究了其在1.0、2.0和2.8 μm处的非线性光学吸收特性,在图9d—f所示的非线性透过率曲线中,观察到在1.0 μm处具有最低16.24 MW/cm2的饱和光强和最大调制深度,并成功在此波段处实现脉冲宽度短至356 fs的连续波锁模激光操作.此外,他们还通过LPE方法成功制备了二维碲烯/BP异质结[74],并将其用于被动调Q全固态激光器中,实现了脉宽短至404 fs、最大输出功率为292 mW的连续波锁模激光,同时表明了二维异质结纳米片在超快光子学应用中的潜力.

  • 除了二维硫化物外,其他类型的二维材料也相继在被动锁模激光器领域有所应用.Cai等[75]利用TIs不同寻常的霍尔效应和热电效应等多种特殊性质,系统研究了ZrTe5的非线性吸收特性,并首次将ZrTe5作为可饱和吸收体在1.06 μm和1.34 μm处展示了其作为脉冲光调制器的应用潜力.图10a显示了连续波(CW)和插入可饱和吸收体后的锁模(ML)脉冲输出功率随泵浦功率的变化曲线,图10d展示了具有锁模特征的脉冲序列,图10f的光谱显示的半峰全宽(FWHM)为0.38 nm,证明了激光器出光频率的稳定性,结合图10e的自相关轨迹证明了ZrTe5可饱和吸收体成功在1 065.63 nm处产生了脉宽为18.4 ps的脉冲输出.2023年,Hu等[76]研究了MAX相的脉冲调制潜力,采用超声热溶法和旋涂工艺制备了基于Nb2AlC饱和吸收体并应用于Tm:YLF激光器,在1 872.1 nm处成功实现了平均输出功率为0.379 W、脉冲宽度为200 ps的被动锁模操作.

  • 表1 基于二维材料的被动调Q固态激光器性能汇总

  • Table1 Performance summary of passively Q-switched solid-state lasers based on 2D materials

  • 图9 二维Ta2NiSe5纳米片在1.0、2.0和2.8 μm处的开孔Z扫描和非线性透过率曲线 a—c.开孔Z扫描; d—f.非线性透射率[73]

  • Fig.9 Open aperture Z-scan and nonlinear transmittance curves of the 2D Ta2NiSe5 nanosheets at 1.0, 2.0 and 2.8 μm a-c.open aperture Z-scan; d-f.nonlinear transmission[73]

  • 近些年来研究发现,分子尺度的修饰能够提高激光性能,在有机材料方面,具备可调有序网络结构和分子尺度结构的金属有机框架(Metal-Organic Framework,MOF)在非线性光学领域得到了广泛关注[77].Gao等[78]利用沸石咪唑骨架-8(ZIF-8)作为可饱和吸收体,并在固态激光器中成功实现了被动锁模操作.表2总结了近年来不同类型二维材料的被动锁模固态激光器的性能.

  • 4 结论与展望

  • 综上所述,可饱和吸收体是被动调节谐振腔的品质因数和引入固定的相位关系来产生短脉冲激光的关键.本文综述了近年来二维材料可饱和吸收体在固态激光器领域取得的一系列重要成果,包括石墨烯在内的许多新兴二维材料,如TIs、TMDs、BP、MXene以及MOF等.然而,脉冲激光的性能不仅与激光器系统相关,材料的特性和可饱和吸收体的制备方式都是影响超短脉冲性能的重要因素,所以未来仍需要在以下方面深入探讨:1)光与材料间的作用机理; 2)高质量材料的制备工艺; 3)材料非线性吸收特性的调控; 4)材料与激光器的耦合方式.在被动调Q/锁模固态激光器领域,制备具有高质量、高热损伤阈值、超快宽频光学响应、大调制深度的二维可饱和吸收体是一直以来的目标,随着本领域研究的深入,未来有望能进一步明确光与物质的作用原理和改进材料的制备工艺,通过掺杂或加电等手段改变材料的带隙结构从而实现对二维材料的非线性吸收特性的调控,优化材料与激光器的结合方式,实现工业化应用.

  • 图10 脉冲激光输出特性 a.平均输出功率与吸收泵浦功率; b—d.不同时间范围下的激光脉冲序列; e.锁模脉冲的自相关轨迹; f.1.06 μm处的锁模激光光谱[75]

  • Fig.10 Output characteristics of the pulse laser a.average output power versus absorbed pump power; b-d.mode-locking laser pulse trains under different time ranges; e.autocorrelation trace of the mode-locking pulses; f.the corresponding mode-locking laser spectrum at 1.06 μm[75]

  • 表2 基于二维材料的被动锁模固态激光器性能汇总

  • Table2 Performance summary of passively mode-locked solid-state lasers based on 2D materials

  • 参考文献

    • [1] Bowers M S,Canalias C,Mirov S,et al.Feature issue introduction:advanced solid-state lasers[J].Optical Materials Express,2022,12(6):2283

    • [2] Jia X S,Chen Y Q,Liu L,et al.Combined pulse laser:reliable tool for high-quality,high-efficiency material processing[J].Optics & Laser Technology,2022,153:108209

    • [3] Kopyeva M S,Filatova S A,Kamynin V A,et al.Ex-vivo exposure on biological tissues in the 2-μm spectral range with an all-fiber continuous-wave holmium laser[J].Photonics,2021,9(1):20

    • [4] Xu J,Kong M W,Lin A B,et al.Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication[J].Optics Letters,2017,42(9):1664-1667

    • [5] Hansen J N,Hancock S,Prade L,et al.Assessing novel lidar modalities for maximizing coverage of a spaceborne system through the use of diode lasers[J].Remote Sensing,2022,14(10):2426

    • [6] Bobretsova Y K,Veselov D A,Voronkova N V,et al.Pulsed laser module based on a high-power semiconductor laser for the spectral range 1 500-1 600 nm[J].Quantum Electronics,2019,49(5):488-492

    • [7] Komljenovic T,Liu S T,Norberg E,et al.Control of widely tunable lasers with high-Q resonator as an integral part of the cavity[J].Journal of Lightwave Technology,2017,35(18):3934-3939

    • [8] Lin Z L,Xue W Z,Zeng H J,et al.Semiconductor saturable absorber mirror mode-locked Yb:YAP laser[J].Optics Express,2022,30(18):31986-31997

    • [9] Qi Y,Bai Z X,Wang Y L,et al.Research progress of all-solid-state passively Q-switched Er:Yb:glass lasers[J].Infrared Physics & Technology,2021,116:103727

    • [10] Ma X F,Wang C,Zhang J,et al.Broadband BiOCl nonlinear saturable absorber for watt-level passively Q-switched Yb:LuAG single crystal fiber laser[J].Advanced Optical Materials,2022,10(22):2201087

    • [11] Zhang K,Feng M,Yang J X,et al.Niobium tellurium as a novel broadband saturable absorber for pulsed fiber lasers[J].Journal of Materials Chemistry C,2022,10(36):13201-13209

    • [12] Pang L H,Zhao M,Zhao Q Y,et al.GaSb film is a saturable absorber for dissipative soliton generation in a fiber laser[J].ACS Applied Materials & Interfaces,2022,14(50):55971-55978

    • [13] Beer D,Weber J.Photobleaching of organic laser dyes[J].Optics Communications,1972,5(4):307-309

    • [14] 严娜,常建华,李寒寒,等.一种基于Cr4+:YAG晶体的紧凑高效被动调Q脉冲激光器[J].电子器件,2018,41(1):25-29.YAN Na,CHANG Jianhua,LI Hanhan,et al.A compact and highly efficient passively Q-switched pulsed laser based on Cr4+:YAG crystal[J].Chinese Journal of Electron Devices,2018,41(1):25-29

    • [15] Zhang N,Song Q S,et al.44-fs pulse generation at 2.05 μm from a SESAM mode-locked Tm:GdScO3 laser[J].Optics Letters,2023,48(2):510

    • [16] Wang L,Chen W D,Zhao Y G,et al.Sub-50 fs pulse generation from a SESAM mode-locked Tm,Ho-codoped calcium aluminate laser[J].Optics Letters,2021,46(11):2642

    • [17] Dai T F,Chang J H,Deng Z L,et al.Effective switching of an all-solid-state mode-locked laser by a graphene modulator[J].Optics Express,2022,30(10):16530

    • [18] Haris H,Harun S W,Muhammad A R,et al.Passively Q-switched Erbium-doped and Ytterbium-doped fibre lasers with topological insulator bismuth selenide(Bi2Se3)as saturable absorber[J].Optics & Laser Technology,2017,88:121-127

    • [19] Liu W J,Pang L H,Han H N,et al.Tungsten disulphide for ultrashort pulse generation in all-fiber lasers[J].Nanoscale,2017,9(18):5806-5811

    • [20] Jin X X,Hu G H,Zhang M,et al.Environmentally stable black phosphorus saturable absorber for ultrafast laser[J].Nanophotonics,2020,9(8):2445-2449

    • [21] Wu Q,Jin X,Chen S,et al.MXene-based saturable absorber for femtosecond mode-locked fiber lasers[J].Optics Express,2019,27(7):10159

    • [22] Tan W D,Su C Y,Knize R J,et al.Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber[J].Applied Physics Letters,2010,96(3):031106

    • [23] Bao Q L,Zhang H,Wang Y,et al.Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J].Advanced Functional Materials,2009,19(19):3077-3083

    • [24] Jiang T,Huang D,Cheng J L,et al.Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene[J].Nature Photonics,2018,12(7):430-436

    • [25] Wang G Z,Baker-Murray A A,Blau W J.Saturable absorption in 2D nanomaterials and related photonic devices[J].Laser & Photonics Reviews,2019,13(7):1800282

    • [26] Zhang H J,Liu C X,Qi X L,et al.Topological insulators in Bi2Se3,Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J].Nature Physics,2009,5(6):438-442

    • [27] Lu S B,Zhao C J,Zou Y H,et al.Third order nonlinear optical property of Bi2Se3[J].Optics Express,2013,21(2):2072

    • [28] Yu H H,Zhang H,Wang Y C,et al.Topological insulator as an optical modulator for pulsed solid-state lasers[J].Laser & Photonics Reviews,2013,7(6):L77-L83

    • [29] Mao D,Wang Y D,Ma C J,et al.WS2 mode-locked ultrafast fiber laser[J].Scientific Reports,2015,5:7965

    • [30] Wang K P,Wang J,Fan J T,et al.Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J].ACS Nano,2013,7(10):9260-9267

    • [31] Long H,Tao L L,Tang C Y,et al.Tuning nonlinear optical absorption properties of WS2 nanosheets[J].Nanoscale,2015,7(42):17771-17777

    • [32] Castellanos-Gomez A,Vicarelli L,Prada E,et al.Isolation and characterization of few-layer black phosphorus[J].2D Materials,2014,1(2):025001

    • [33] Wang Y W,Huang G H,Mu H R,et al.Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension[J].Applied Physics Letters,2015,107(9):091905

    • [34] 刘邦政,李双成,吴政阳,等.基于黑磷可饱和吸收体的被动调Q Tm:YAP激光器[J].激光与光电子学进展,2023,60(1):233-238.LIU Bangzheng,LI Shuangcheng,WU Zhengyang,et al.Passively Q-switched operation of Tm:YAP laser with black phosphorus saturable absorber[J].Laser & Optoelectronics Progress,2023,60(1):233-238

    • [35] Lu S B,Miao L L,Guo Z N,et al.Broadband nonlinear optical response in multi-layer black phosphorus:an emerging infrared and mid-infrared optical material[J].Optics Express,2015,23(9):11183

    • [36] Chu Z Z,Liu J E,Guo Z N,et al.2 μm passively Q-switched laser based on black phosphorus[J].Optical Materials Express,2016,6(7):2374

    • [37] Zhou L,Kang J L,Dong Y L,et al.Solvent-stabilized few-layer violet phosphorus and its ultrafast nonlinear optics[J].Nano Research,2023,16(4):5843-5849

    • [38] Naguib M,Kurtoglu M,Presser V,et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J].Advanced Materials,2011,23(37):4248-4253

    • [39] Kawai K,Fujita M,Iizuka R,et al.Influence of surface termination groups on electrochemical charge storage of MXene electrodes[J].2D Materials,2023,10(1):014012

    • [40] Jiang X T,Liu S X,Liang W Y,et al.Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T=F,O,or OH)[J].Laser & Photonics Reviews,2018,12(2):1700229

    • [41] Zhu Y,Sun X Q,Tang Y L,et al.Two-dimensional materials for light emitting applications:achievement,challenge and future perspectives[J].Nano Research,2021,14(6):1912-1936

    • [42] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669

    • [43] Chen Y,Jiang G B,Chen S Q,et al.Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J].Optics Express,2015,23(10):12823

    • [44] Yin X L,Li Y W,Meng H,et al.Surface functionalization of bulk MoS2 sheets for efficient liquid phase exfoliation in polar micromolecular solvents[J].Applied Surface Science,2019,486:362-370

    • [45] Cai Z Y,Liu B L,Zou X L,et al.Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures[J].Chemical Reviews,2018,118(13):6091-6133

    • [46] Jiao L,Wang Y H,Zhi Y S,et al.Fabrication and characterization of two-dimensional layered MoS2 thin films by pulsed laser deposition[J].Advances in Condensed Matter Physics,2018,2018:1-5

    • [47] Rathore J,Mahapatra S.Formation of antimonene nanoribbons by molecular beam epitaxy[J].2D Materials,2020,7(4):045003

    • [48] Öper M,Yorulmaz U,Sevik C,et al.Controlled CVD growth of ultrathin Mo2C(MXene)flakes[J].Journal of Applied Physics,2022,131(2):025304

    • [49] Lu S B,Ge Y Q,Sun Z B,et al.Ultrafast nonlinear absorption and nonlinear refraction in few-layer oxidized black phosphorus[J].Photonics Research,2016,4(6):286

    • [50] Yan K,Fu L,Peng H L,et al.Designed CVD growth of graphene via process engineering[J].Accounts of Chemical Research,2013,46(10):2263-2274

    • [51] Zuo Y G,Yu W T,Liu C,et al.Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity[J].Nature Nanotechnology,2020,15(12):987-991

    • [52] Zhou Y,Zhang Z X,Jiang W H,et al.A passively mode-locked thulium-doped fiber laser based on a D-shaped fiber deposited with PbS nanoparticles[J].Journal of Materials Chemistry C,2019,7(36):11215-11219

    • [53] Jafry A A A,Krishnan G,Kasim N,et al.MXene Ti3C2Tx as a passive Q-switcher for erbium-doped fiber laser[J].Optical Fiber Technology,2020,58:102289

    • [54] Wang F,Qu Y H,Lan D F,et al.Carbon nano-onions as saturable absorbers for pulsed fiber lasers[J].ACS Applied Nano Materials,2022,5(8):11400-11406

    • [55] Jiang X T,Li W J,Hai T,et al.Inkjet-printed MXene micro-scale devices for integrated broadband ultrafast photonics[J].NPJ 2D Materials and Applications,2019,3:34

    • [56] Yang H Z,Feng X B,Wang Q A,et al.Giant two-photon absorption in bilayer graphene[J].Nano Letters,2011,11(7):2622-2627

    • [57] Sheik-Bahae M,Said A A,Wei T H,et al.Sensitive measurement of optical nonlinearities using a single beam[J].IEEE Journal of Quantum Electronics,1990,26(4):760-769

    • [58] Wang J,Hernandez Y,Lotya M,et al.Broadband nonlinear optical response of graphene dispersions[J].Advanced Materials,2009,21(23):2430-2435

    • [59] Zhang J,Jiang T A,Zhou T,et al.Saturated absorption of different layered Bi2Se3 films in the resonance zone[J].Photonics Research,2018,6(10):C8

    • [60] Chang J H,Li H H,Yang Z B,et al.Efficient and compact Q-switched green laser using graphene oxide as saturable absorber[J].Optics & Laser Technology,2018,98:134-138

    • [61] 丁蓉,常建华,孔春霞,等.基于石墨烯量子点的被动调QNd:YVO4激光器[J].发光学报,2020,41(1):63-70.DING Rong,CHANG Jianhua,KONG Chunxia,et al.Passively Q-switched Nd:YVO4 laser based on graphene quantum dots[J].Chinese Journal of Luminescence,2020,41(1):63-70

    • [62] Li Y,Li H,Wu S W,et al.Tuning the optical nonlinearity of graphene[J].The Journal of Chemical Physics,2020,153(8):080903

    • [63] Dai T F,Liu X,Lei W,et al.Passively Q-switched Nd:YVO4 laser based on silver-plated graphene saturable absorber[C]//2019 3rd International Conference on Circuits,System and Simulation(ICCSS).June 13-15,2019,Nanjing,China.IEEE,2019:46-49

    • [64] Dai T F,Chang J H,Li H X,et al.Printable graphene-insulator-semiconductor(GIS)heterostructures for active control of infrared Q-switched laser[J].Advanced Optical Materials,2021,9(10):2001502

    • [65] Dai R,Chang J H,Li Y Y,et al.Performance enhancement of passively Q-switched Nd:YVO4 laser using graphene-molybdenum disulphide heterojunction as a saturable absorber[J].Optics & Laser Technology,2019,117:265-271

    • [66] 刘海洋,常建华,冯潇潇,等.基于石墨烯量子点与二硫化钼的双被动调Q激光器研究[J].中国激光,2020,47(11):26-32.LIU Haiyang,CHANG Jianhua,FENG Xiaoxiao,et al.Research on double passively Q-switched laser based on graphene quantum dots and molybdenum disulfide[J].Chinese Journal of Lasers,2020,47(11):26-32

    • [67] Huang H F,Wang J W,Xu N,et al.Ti2CTx MXene as a saturable absorber for passively Q-switched solid-state lasers[J].Polymers,2021,13(2):247

    • [68] Ma X F,Xue N,Wang T,et al.Passively CI-switched single crystal fiber pulsed laser at 1.05 μm with T3C2Tx as the saturable absorber[J].Optics Express,2022,30(25):44617-44627

    • [69] Wang J A,Li G Y,Liu S C,et al.Nonlinear absorption response of zirconium carbide films[J].ACS Applied Materials & Interfaces,2023,15(2):3317-3324

    • [70] 杨闵皓,常建华,石少杭,等.新型二硫化钼可饱和吸收体的制备及其超快特性研究[J].中国激光,2018,45(10):59-66.YANG Minhao,CHANG Jianhua,SHI Shaohang,et al.Preparation and study on the ultrafast characteristics of a new type of molybdenum disulfide saturable absorber[J].Chinese Journal of Lasers,2018,45(10):59-66

    • [71] Shi S H,Chang J H,Yang Z B,et al.Passively mode-locked Nd:YVO4/PPLN green laser using molybdenum disulfide as a saturable absorber[J].Optical Engineering,2018,57(9):096110

    • [72] Yang Z X,Yang Q,Ren X H,et al.Passively mode-locked red Pr:LiYF4 laser based on a two-dimensional palladium diselenide saturable absorber[J].Optics Express,2022,30(2):2900

    • [73] Yan B Z,Guo H W,He G B,et al.Ta2NiSe5 nanosheets as a novel broadband saturable absorber for solid-state pulse laser generation[J].Science China Materials,2021,64(6):1468-1476

    • [74] Yan B Z,Li G R,Shi B N,et al.2D tellurene/black phosphorus heterojunctions based broadband nonlinear saturable absorber[J].Nanophotonics,2020,9(8):2593-2602

    • [75] Cai E L,Xu J Y,Xia Y Y,et al.The nonlinear optical properties of zirconium pentatelluride and its application in ultrafast solid-state lasers[J].Optics & Laser Technology,2022,150:108003

    • [76] Hu Y Y,Yang W L,Qi T Q,et al.Nb2AlC as saturable absorber for a passively mode-locked operation of Tm:YLF laser[J].Optics & Laser Technology,2023,161:109116

    • [77] Liang Y N,Hu W J,Yuan X,et al.Switchable nonlinear optical absorption of metal-organic frameworks[J].Advanced Optical Materials,2022,10(18):2200779

    • [78] Gao Q,Ma X Z,Zhang W S,et al.A passively mode-locked of Tm:YAP laser with a zeolitic imidazolate frameworks-8(ZIF-8)saturable absorber[J].Optik,2022,271:170133

  • 参考文献

    • [1] Bowers M S,Canalias C,Mirov S,et al.Feature issue introduction:advanced solid-state lasers[J].Optical Materials Express,2022,12(6):2283

    • [2] Jia X S,Chen Y Q,Liu L,et al.Combined pulse laser:reliable tool for high-quality,high-efficiency material processing[J].Optics & Laser Technology,2022,153:108209

    • [3] Kopyeva M S,Filatova S A,Kamynin V A,et al.Ex-vivo exposure on biological tissues in the 2-μm spectral range with an all-fiber continuous-wave holmium laser[J].Photonics,2021,9(1):20

    • [4] Xu J,Kong M W,Lin A B,et al.Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication[J].Optics Letters,2017,42(9):1664-1667

    • [5] Hansen J N,Hancock S,Prade L,et al.Assessing novel lidar modalities for maximizing coverage of a spaceborne system through the use of diode lasers[J].Remote Sensing,2022,14(10):2426

    • [6] Bobretsova Y K,Veselov D A,Voronkova N V,et al.Pulsed laser module based on a high-power semiconductor laser for the spectral range 1 500-1 600 nm[J].Quantum Electronics,2019,49(5):488-492

    • [7] Komljenovic T,Liu S T,Norberg E,et al.Control of widely tunable lasers with high-Q resonator as an integral part of the cavity[J].Journal of Lightwave Technology,2017,35(18):3934-3939

    • [8] Lin Z L,Xue W Z,Zeng H J,et al.Semiconductor saturable absorber mirror mode-locked Yb:YAP laser[J].Optics Express,2022,30(18):31986-31997

    • [9] Qi Y,Bai Z X,Wang Y L,et al.Research progress of all-solid-state passively Q-switched Er:Yb:glass lasers[J].Infrared Physics & Technology,2021,116:103727

    • [10] Ma X F,Wang C,Zhang J,et al.Broadband BiOCl nonlinear saturable absorber for watt-level passively Q-switched Yb:LuAG single crystal fiber laser[J].Advanced Optical Materials,2022,10(22):2201087

    • [11] Zhang K,Feng M,Yang J X,et al.Niobium tellurium as a novel broadband saturable absorber for pulsed fiber lasers[J].Journal of Materials Chemistry C,2022,10(36):13201-13209

    • [12] Pang L H,Zhao M,Zhao Q Y,et al.GaSb film is a saturable absorber for dissipative soliton generation in a fiber laser[J].ACS Applied Materials & Interfaces,2022,14(50):55971-55978

    • [13] Beer D,Weber J.Photobleaching of organic laser dyes[J].Optics Communications,1972,5(4):307-309

    • [14] 严娜,常建华,李寒寒,等.一种基于Cr4+:YAG晶体的紧凑高效被动调Q脉冲激光器[J].电子器件,2018,41(1):25-29.YAN Na,CHANG Jianhua,LI Hanhan,et al.A compact and highly efficient passively Q-switched pulsed laser based on Cr4+:YAG crystal[J].Chinese Journal of Electron Devices,2018,41(1):25-29

    • [15] Zhang N,Song Q S,et al.44-fs pulse generation at 2.05 μm from a SESAM mode-locked Tm:GdScO3 laser[J].Optics Letters,2023,48(2):510

    • [16] Wang L,Chen W D,Zhao Y G,et al.Sub-50 fs pulse generation from a SESAM mode-locked Tm,Ho-codoped calcium aluminate laser[J].Optics Letters,2021,46(11):2642

    • [17] Dai T F,Chang J H,Deng Z L,et al.Effective switching of an all-solid-state mode-locked laser by a graphene modulator[J].Optics Express,2022,30(10):16530

    • [18] Haris H,Harun S W,Muhammad A R,et al.Passively Q-switched Erbium-doped and Ytterbium-doped fibre lasers with topological insulator bismuth selenide(Bi2Se3)as saturable absorber[J].Optics & Laser Technology,2017,88:121-127

    • [19] Liu W J,Pang L H,Han H N,et al.Tungsten disulphide for ultrashort pulse generation in all-fiber lasers[J].Nanoscale,2017,9(18):5806-5811

    • [20] Jin X X,Hu G H,Zhang M,et al.Environmentally stable black phosphorus saturable absorber for ultrafast laser[J].Nanophotonics,2020,9(8):2445-2449

    • [21] Wu Q,Jin X,Chen S,et al.MXene-based saturable absorber for femtosecond mode-locked fiber lasers[J].Optics Express,2019,27(7):10159

    • [22] Tan W D,Su C Y,Knize R J,et al.Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber[J].Applied Physics Letters,2010,96(3):031106

    • [23] Bao Q L,Zhang H,Wang Y,et al.Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J].Advanced Functional Materials,2009,19(19):3077-3083

    • [24] Jiang T,Huang D,Cheng J L,et al.Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene[J].Nature Photonics,2018,12(7):430-436

    • [25] Wang G Z,Baker-Murray A A,Blau W J.Saturable absorption in 2D nanomaterials and related photonic devices[J].Laser & Photonics Reviews,2019,13(7):1800282

    • [26] Zhang H J,Liu C X,Qi X L,et al.Topological insulators in Bi2Se3,Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J].Nature Physics,2009,5(6):438-442

    • [27] Lu S B,Zhao C J,Zou Y H,et al.Third order nonlinear optical property of Bi2Se3[J].Optics Express,2013,21(2):2072

    • [28] Yu H H,Zhang H,Wang Y C,et al.Topological insulator as an optical modulator for pulsed solid-state lasers[J].Laser & Photonics Reviews,2013,7(6):L77-L83

    • [29] Mao D,Wang Y D,Ma C J,et al.WS2 mode-locked ultrafast fiber laser[J].Scientific Reports,2015,5:7965

    • [30] Wang K P,Wang J,Fan J T,et al.Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J].ACS Nano,2013,7(10):9260-9267

    • [31] Long H,Tao L L,Tang C Y,et al.Tuning nonlinear optical absorption properties of WS2 nanosheets[J].Nanoscale,2015,7(42):17771-17777

    • [32] Castellanos-Gomez A,Vicarelli L,Prada E,et al.Isolation and characterization of few-layer black phosphorus[J].2D Materials,2014,1(2):025001

    • [33] Wang Y W,Huang G H,Mu H R,et al.Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension[J].Applied Physics Letters,2015,107(9):091905

    • [34] 刘邦政,李双成,吴政阳,等.基于黑磷可饱和吸收体的被动调Q Tm:YAP激光器[J].激光与光电子学进展,2023,60(1):233-238.LIU Bangzheng,LI Shuangcheng,WU Zhengyang,et al.Passively Q-switched operation of Tm:YAP laser with black phosphorus saturable absorber[J].Laser & Optoelectronics Progress,2023,60(1):233-238

    • [35] Lu S B,Miao L L,Guo Z N,et al.Broadband nonlinear optical response in multi-layer black phosphorus:an emerging infrared and mid-infrared optical material[J].Optics Express,2015,23(9):11183

    • [36] Chu Z Z,Liu J E,Guo Z N,et al.2 μm passively Q-switched laser based on black phosphorus[J].Optical Materials Express,2016,6(7):2374

    • [37] Zhou L,Kang J L,Dong Y L,et al.Solvent-stabilized few-layer violet phosphorus and its ultrafast nonlinear optics[J].Nano Research,2023,16(4):5843-5849

    • [38] Naguib M,Kurtoglu M,Presser V,et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J].Advanced Materials,2011,23(37):4248-4253

    • [39] Kawai K,Fujita M,Iizuka R,et al.Influence of surface termination groups on electrochemical charge storage of MXene electrodes[J].2D Materials,2023,10(1):014012

    • [40] Jiang X T,Liu S X,Liang W Y,et al.Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T=F,O,or OH)[J].Laser & Photonics Reviews,2018,12(2):1700229

    • [41] Zhu Y,Sun X Q,Tang Y L,et al.Two-dimensional materials for light emitting applications:achievement,challenge and future perspectives[J].Nano Research,2021,14(6):1912-1936

    • [42] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669

    • [43] Chen Y,Jiang G B,Chen S Q,et al.Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J].Optics Express,2015,23(10):12823

    • [44] Yin X L,Li Y W,Meng H,et al.Surface functionalization of bulk MoS2 sheets for efficient liquid phase exfoliation in polar micromolecular solvents[J].Applied Surface Science,2019,486:362-370

    • [45] Cai Z Y,Liu B L,Zou X L,et al.Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures[J].Chemical Reviews,2018,118(13):6091-6133

    • [46] Jiao L,Wang Y H,Zhi Y S,et al.Fabrication and characterization of two-dimensional layered MoS2 thin films by pulsed laser deposition[J].Advances in Condensed Matter Physics,2018,2018:1-5

    • [47] Rathore J,Mahapatra S.Formation of antimonene nanoribbons by molecular beam epitaxy[J].2D Materials,2020,7(4):045003

    • [48] Öper M,Yorulmaz U,Sevik C,et al.Controlled CVD growth of ultrathin Mo2C(MXene)flakes[J].Journal of Applied Physics,2022,131(2):025304

    • [49] Lu S B,Ge Y Q,Sun Z B,et al.Ultrafast nonlinear absorption and nonlinear refraction in few-layer oxidized black phosphorus[J].Photonics Research,2016,4(6):286

    • [50] Yan K,Fu L,Peng H L,et al.Designed CVD growth of graphene via process engineering[J].Accounts of Chemical Research,2013,46(10):2263-2274

    • [51] Zuo Y G,Yu W T,Liu C,et al.Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity[J].Nature Nanotechnology,2020,15(12):987-991

    • [52] Zhou Y,Zhang Z X,Jiang W H,et al.A passively mode-locked thulium-doped fiber laser based on a D-shaped fiber deposited with PbS nanoparticles[J].Journal of Materials Chemistry C,2019,7(36):11215-11219

    • [53] Jafry A A A,Krishnan G,Kasim N,et al.MXene Ti3C2Tx as a passive Q-switcher for erbium-doped fiber laser[J].Optical Fiber Technology,2020,58:102289

    • [54] Wang F,Qu Y H,Lan D F,et al.Carbon nano-onions as saturable absorbers for pulsed fiber lasers[J].ACS Applied Nano Materials,2022,5(8):11400-11406

    • [55] Jiang X T,Li W J,Hai T,et al.Inkjet-printed MXene micro-scale devices for integrated broadband ultrafast photonics[J].NPJ 2D Materials and Applications,2019,3:34

    • [56] Yang H Z,Feng X B,Wang Q A,et al.Giant two-photon absorption in bilayer graphene[J].Nano Letters,2011,11(7):2622-2627

    • [57] Sheik-Bahae M,Said A A,Wei T H,et al.Sensitive measurement of optical nonlinearities using a single beam[J].IEEE Journal of Quantum Electronics,1990,26(4):760-769

    • [58] Wang J,Hernandez Y,Lotya M,et al.Broadband nonlinear optical response of graphene dispersions[J].Advanced Materials,2009,21(23):2430-2435

    • [59] Zhang J,Jiang T A,Zhou T,et al.Saturated absorption of different layered Bi2Se3 films in the resonance zone[J].Photonics Research,2018,6(10):C8

    • [60] Chang J H,Li H H,Yang Z B,et al.Efficient and compact Q-switched green laser using graphene oxide as saturable absorber[J].Optics & Laser Technology,2018,98:134-138

    • [61] 丁蓉,常建华,孔春霞,等.基于石墨烯量子点的被动调QNd:YVO4激光器[J].发光学报,2020,41(1):63-70.DING Rong,CHANG Jianhua,KONG Chunxia,et al.Passively Q-switched Nd:YVO4 laser based on graphene quantum dots[J].Chinese Journal of Luminescence,2020,41(1):63-70

    • [62] Li Y,Li H,Wu S W,et al.Tuning the optical nonlinearity of graphene[J].The Journal of Chemical Physics,2020,153(8):080903

    • [63] Dai T F,Liu X,Lei W,et al.Passively Q-switched Nd:YVO4 laser based on silver-plated graphene saturable absorber[C]//2019 3rd International Conference on Circuits,System and Simulation(ICCSS).June 13-15,2019,Nanjing,China.IEEE,2019:46-49

    • [64] Dai T F,Chang J H,Li H X,et al.Printable graphene-insulator-semiconductor(GIS)heterostructures for active control of infrared Q-switched laser[J].Advanced Optical Materials,2021,9(10):2001502

    • [65] Dai R,Chang J H,Li Y Y,et al.Performance enhancement of passively Q-switched Nd:YVO4 laser using graphene-molybdenum disulphide heterojunction as a saturable absorber[J].Optics & Laser Technology,2019,117:265-271

    • [66] 刘海洋,常建华,冯潇潇,等.基于石墨烯量子点与二硫化钼的双被动调Q激光器研究[J].中国激光,2020,47(11):26-32.LIU Haiyang,CHANG Jianhua,FENG Xiaoxiao,et al.Research on double passively Q-switched laser based on graphene quantum dots and molybdenum disulfide[J].Chinese Journal of Lasers,2020,47(11):26-32

    • [67] Huang H F,Wang J W,Xu N,et al.Ti2CTx MXene as a saturable absorber for passively Q-switched solid-state lasers[J].Polymers,2021,13(2):247

    • [68] Ma X F,Xue N,Wang T,et al.Passively CI-switched single crystal fiber pulsed laser at 1.05 μm with T3C2Tx as the saturable absorber[J].Optics Express,2022,30(25):44617-44627

    • [69] Wang J A,Li G Y,Liu S C,et al.Nonlinear absorption response of zirconium carbide films[J].ACS Applied Materials & Interfaces,2023,15(2):3317-3324

    • [70] 杨闵皓,常建华,石少杭,等.新型二硫化钼可饱和吸收体的制备及其超快特性研究[J].中国激光,2018,45(10):59-66.YANG Minhao,CHANG Jianhua,SHI Shaohang,et al.Preparation and study on the ultrafast characteristics of a new type of molybdenum disulfide saturable absorber[J].Chinese Journal of Lasers,2018,45(10):59-66

    • [71] Shi S H,Chang J H,Yang Z B,et al.Passively mode-locked Nd:YVO4/PPLN green laser using molybdenum disulfide as a saturable absorber[J].Optical Engineering,2018,57(9):096110

    • [72] Yang Z X,Yang Q,Ren X H,et al.Passively mode-locked red Pr:LiYF4 laser based on a two-dimensional palladium diselenide saturable absorber[J].Optics Express,2022,30(2):2900

    • [73] Yan B Z,Guo H W,He G B,et al.Ta2NiSe5 nanosheets as a novel broadband saturable absorber for solid-state pulse laser generation[J].Science China Materials,2021,64(6):1468-1476

    • [74] Yan B Z,Li G R,Shi B N,et al.2D tellurene/black phosphorus heterojunctions based broadband nonlinear saturable absorber[J].Nanophotonics,2020,9(8):2593-2602

    • [75] Cai E L,Xu J Y,Xia Y Y,et al.The nonlinear optical properties of zirconium pentatelluride and its application in ultrafast solid-state lasers[J].Optics & Laser Technology,2022,150:108003

    • [76] Hu Y Y,Yang W L,Qi T Q,et al.Nb2AlC as saturable absorber for a passively mode-locked operation of Tm:YLF laser[J].Optics & Laser Technology,2023,161:109116

    • [77] Liang Y N,Hu W J,Yuan X,et al.Switchable nonlinear optical absorption of metal-organic frameworks[J].Advanced Optical Materials,2022,10(18):2200779

    • [78] Gao Q,Ma X Z,Zhang W S,et al.A passively mode-locked of Tm:YAP laser with a zeolitic imidazolate frameworks-8(ZIF-8)saturable absorber[J].Optik,2022,271:170133

  • Address:No. 219, Ningliu Road, Nanjing, Jiangsu Province

    Postcode:210044

    Phone:025-58731025