WRF cloud product rendering based on optimized bounding volume hierarchy algorithm
Author:
Clc Number:

TP391

  • Article
  • | |
  • Metrics
  • |
  • Reference [21]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    As a crucial component of weather systems,3D cloud simulation plays a significant role in various fields such as military and aviation.However,the current mainstream Bounding Volume Hierarchy (BVH) algorithm exhibits inefficient rendering performance when dealing with non-uniform and large-volume clouds.Here,a cloud rendering approach based on optimized BVH algorithm is proposed.The data points from the WRF(Weather Research and Forecasting) grids are used as cloud primitives,and a Z-order Hilbert curve is employed for spatial sorting.The BVH algorithm based on the Surface Area Heuristic (SAH) is optimized by locally optimizing the cloud primitive density,aiming to enhance computational efficiency.To tackle the data access overhead of overlapping BVH nodes,a novel storage structure called Overlapping Node Sets (ONS) is introduced,which reduces the time complexity.The optimized BVH algorithm reduces unnecessary intersection tests between rays and triangle surfaces,and resolves issues related to invalid boundary volume overlaps.Simulation experiments demonstrate that the proposed method achieves a 15.6% improvement in SAH cost compared to similar state-of-the-art algorithms,a 10% improvement in EPO(Effective Partial Overlap),and a reduction of over 100% in construction time.The computational efficiency of the optimized BVH algorithm outperforms similar algorithms in any WRF cloud scenario,indicating its capability for rapid rendering of WRF cloud products.

    Reference
    [1] 刘文惠,罗仕,陆春松,等.夹卷混合过程及其影响因子对云内过饱和度的影响[J].气象,2023,49(5):551-562 LIU Wenhui,LUO Shi,LU Chunsong,et al.Effects of entrainment-mixing process and its impact factors on cloud supersaturation[J].Meteorological Monthly,2023,49(5):551-562
    [2] 蔡云萍,罗昌荣,陈赛,等.激光云高仪探测中国东南沿海云分布特征[J].气象,2023,49(2):170-177 CAI Yunping,LUO Changrong,CHEN Sai,et al.Observation of cloud characteristics with ceilometer in the southeast coast of China[J].Meteorological Monthly,2023,49(2):170-177
    [3] Yang Y E,Gao S H.The impact of turbulent diffusion driven by fog-top cooling on sea fog development[J].Journal of Geophysical Research:Atmospheres,2020,125(4):e2019JD031562
    [4] Xie Y H,Kou X Y,Li P,et al.A simulation method of three-dimensional cloud based on WRF data[C]//2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData).July 14-17,2019,Atlanta,GA,USA.IEEE,2019:308-314
    [5] Tong X H,Feng Y J.A review of assessment methods for cellular automata models of land-use change and urban growth[J].International Journal of Geographical Information Science,2020,34(5):866-898
    [6] 刘保权,周明全,耿国华.交互式动态体绘制及其加速算法[J].中国图象图形学报,2002,7(3):223-228 LIU Baoquan,ZHOU Mingquan,GENG Guohua.Interactive dynamic volume rendering and its accelerating algorithm[J].Journal of Image and Graphics,2002,7(3):223-228
    [7] Meister D,Ogaki S,Benthin C,et al.A survey on bounding volume hierarchies for ray tracing[J].Computer Graphics Forum,2021,40(2):683-712
    [8] Run Y A N,Libo H,Hui G U O,et al.Review of real-time ray tracing technique research[J].Journal of Frontiers of Computer Science&Technology,2023,17(2):263-278
    [9] 张军,陈凯雯.一种微下击暴流的实时仿真及可视化方法[J].计算机科学与应用,2018(10):1602-1612 ZHANG Jun,CHEN Kaiwen.A real-time simulation and visualization of the microburst[J].Computer Science and Applications,2018(10):1602-1612
    [10] 袁昱纬,全吉成,吴晨,等.基于八叉树自适应体归并的光线跟踪加速结构[J].光学学报,2017,37(1):251-260 YUAN Yuwei,QUAN Jicheng,WU Chen,et al.Ray tracing acceleration structure based on octree adaptive volume merging[J].Acta Optica Sinica,2017,37(1):251-260
    [11] 张满囤,燕明晓,马英石,等.基于八叉树结构的三维体素模型检索[J].计算机学报,2021,44(2):334-346 ZHANG Mandun,YAN Mingxiao,MA Yingshi,et al.3D voxel model retrieval based on octree structure[J].Chinese Journal of Computers,2021,44(2):334-346
    [12] 王皛,邓仰东.全流水线化光线追踪KD-Tree遍历单元硬件架构[J].微电子学与计算机,2014,31(11):167-172,176 WANG Xiao,DENG Yangdong.A fully pipelined KD-tree traversal hardware architecture for ray tracing[J].Microelectronics&Computer,2014,31(11):167-172,176
    [13] Goldsmith J,Salmon J.Automatic creation of object hierarchies for ray tracing[J].IEEE Computer Graphics and Applications,1987,7(5):14-20
    [14] Ernst M,Greiner G.Early split clipping for bounding volume hierarchies[C]//2007 IEEE Symposium on Interactive Ray Tracing.September 10-12,2007,Ulm,Germany.IEEE,2007:73-78
    [15] Dammertz H,Hanika J,Keller A.Shallow bounding volume hierarchies for fast SIMD ray tracing of incoherent rays[C]//Proceedings of the Nineteenth Eurographics Conference on Rendering.New York:ACM,2008:1225-1233
    [16] Wu Z F,Yu H,Chen B.Divide and conquer ray tracing algorithm based on BVH partition[C]//2013 International Conference on Virtual Reality and Visualization.September 14-15,2013,Xi'an,China.IEEE,2013:49-55
    [17] Kulkarni P,Ikeda S,Harada T.Fused BVH to ray trace level of detail meshes[C]//SA'22:SIGGRAPH Asia 2022 Posters.December 6-9,2022,Daegu,Republic of Korea.New York:ACM,2022:1-2
    [18] Aila T M,Karras T,Laine S.On quality metrics of bounding volume hierarchies[C]//Proceedings of the 5th High-Performance Graphics Conference.July 19-21,2013,Anaheim,CA,USA.New York:ACM,2013:101-107
    [19] Jakob J,Guthe M.Optimizing LBVH-construction and hierarchy-traversal to accelerate KNN queries on point clouds using the GPU[J].Computer Graphics Forum,2021,40(1):124-137
    [20] Viitanen T,Koskela M,Jääskeläinen P,et al.MergeTree:a fast hardware HLBVH constructor for animated ray tracing[J].ACM Transactions on Graphics (TOG),2017,36(5):1-14
    [21] Ahmed M,Seraj R,Islam S M S.The k-means algorithm:a comprehensive survey and performance evaluation[J].Electronics,2020,9(8):1295
    Related
    Cited by
Get Citation

TAN Ling, LIN Jiang. WRF cloud product rendering based on optimized bounding volume hierarchy algorithm[J]. Journal of Nanjing University of Information Science & Technology,2025,17(2):215-226

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 10,2023
  • Online: April 16,2025
  • Published: March 28,2025
Article QR Code

Address:No. 219, Ningliu Road, Nanjing, Jiangsu Province

Postcode:210044

Phone:025-58731025