AIGC image quality evaluation indicators
Author:
Clc Number:

TP18

  • Article
  • | |
  • Metrics
  • |
  • Reference [36]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Artificial Intelligence Generated Content (AIGC) technology offers a wide range of information generation services.However,the accurate assessment of AIGC quality is a critical issue that needs to be addressed.This study delves into the quality of images generated by large models and their evaluation metrics.First,it summarizes common methods for evaluating AIGC from a technical perspective,such as deep learning and computer vision approaches.The study introduces the metrics used in these evaluation methods,including accuracy,relevance,consistency,and interpretability,and examines their performance in evaluating diverse generated content.Then,to demonstrate the practical application of these evaluation metrics,this study conducts an evaluation experiment using images generated by ERNIE Bot as an example.Objective evaluation of the generated images is carried out through quantitative metrics like histograms and noise counts,while subjective evaluation focuses on the overall coordination and aesthetic appeal of the images.Finally,by comparing the results of objective and subjective evaluations,this study identifies highly reliable metrics for evaluating the quality of AIGC images,including color bias,noise count,and psychological expectations.This research provides a theoretical foundation for evaluating the AIGC quality and verifies the effectiveness and reliability of a combined approach using both objective and subjective metrics for AIGC product evaluation through experimental results.

    Reference
    [1] 李白杨,白云,詹希旎,等.人工智能生成内容(AIGC)的技术特征与形态演进[J].图书情报知识,2023,40(1):66-74 LI Baiyang,BAI Yun,ZHAN Xini,et al.The technical features and aromorphosis of artificial intelligence generated content(AIGC)[J].Documentation,Information & Knowledge,2023,40(1):66-74
    [2] Wen J B,Kang J W,Xu M R,et al.Freshness-aware incentive mechanism for mobile AI-generated content (AIGC) networks[C]//2023 IEEE/CIC International Conference on Communications in China (ICCC).August 10-12,Dalian,China.IEEE,2023:1-6
    [3] 朱永新,杨帆.ChatGPT/生成式人工智能与教育创新:机遇、挑战以及未来[J].华东师范大学学报(教育科学版),2023,41(7):1-14 ZHU Yongxin,YANG Fan.ChatGPT/AIGC and educational innovation:opportunities,challenges,and the future [J].Journal of East China Normal University (Educational Sciences),2023,41(7):1-14
    [4] Cao Y H,Li S Y,Liu Y X,et al.A comprehensive survey of AI-generated content (AIGC):a history of generative AI from GAN to ChatGPT[J].arXiv e-Print,2023,arXiv:2303.04226
    [5] 曲艺,刘海燕,曹玉东.基于多尺度卷积神经网络的无参考图像质量评价[J].辽宁工业大学学报(自然科学版),2024,44(2):115-120 QU Yi,LIU Haiyan,CAO Yudong.Non-reference image quality evaluation based on multi-scale convolutional neural network[J].Journal of Liaoning University of Technology (Natural Science Edition),2024,44(2):115-120
    [6] 陈向东,褚乐阳,王浩,等.教育数字化转型的技术预见:基于AIGC的行动框架[J].远程教育杂志,2023,41(2):13-24 CHEN Xiangdong,CHU Leyang,WANG Hao,et al.Technology foresight in digital transformation of education:action framework based on AIGC[J].Journal of Distance Education,2023,41(2):13-24
    [7] 王常圣.人工智能驱动的数字图像艺术创作:方法与案例分析[J].智能科学与技术学报,2023,5(3):406-414 WANG Changsheng.AI-driven digital image art creation:methods and case analysis[J].Chinese Journal of Intelligent Science and Technology,2023,5(3):406-414
    [8] 李亚玲,覃缘琪,魏阙.人工智能生成内容的潜在风险及治理对策[J].智能科学与技术学报,2023,5(3):415-423 LI Yaling,QIN Yuanqi,WEI Que.Potential risks and governance strategies of artificial intelligence generated content technology[J].Chinese Journal of Intelligent Science and Technology,2023,5(3):415-423
    [9] 宋士杰,赵宇翔,朱庆华.从ELIZA到ChatGPT:人智交互体验中的AI生成内容(AIGC)可信度评价[J].情报资料工作,2023,44(4):35-42 SONG Shijie,ZHAO Yuxiang,ZHU Qinghua.From ELIZA to ChatGPT:AI-generated content (AIGC) credibility evaluation in human-intelligent interactive experience[J].Information and Documentation Services,2023,44(4):35-42
    [10] 吴柯烨,孙建军,谢紫悦.基于专利文本挖掘的细粒度技术机会分析[J].情报学报,2023,42(10):1199-1212 WU Keye,SUN Jianjun,XIE Ziyue.Research on fine-grained technology opportunity analysis based on patent text mining[J].Journal of the China Society for Scientific and Technical Information,2023,42(10):1199-1212
    [11] 毕文轩.生成式人工智能的风险规制困境及其化解:以ChatGPT的规制为视角[J].比较法研究,2023(3):155-172 BI Wenxuan.The dilemma in the risk regulation of generative artificial intelligence and its resolution:taking ChatGPT as an example[J].Journal of Comparative Law,2023(3):155-172
    [12] 宋一飞,张炜,陈智能,等.数字说话人视频生成综述[J].计算机辅助设计与图形学学报,2023,35(10):1457-1468 SONG Yifei,ZHANG Wei,CHEN Zhineng,et al.A survey on talking head generation[J].Journal of Computer-Aided Design & Computer Graphics,2023,35(10):1457-1468
    [13] 林懿伦,戴星原,李力,等.人工智能研究的新前线:生成式对抗网络[J].自动化学报,2018,44(5):775-792 LIN Yilun,DAI Xingyuan,LI Li,et al.The new frontier of AI research:generative adversarial networks[J].Acta Automatica Sinica,2018,44(5):775-792
    [14] 汪波,牛朝文.从ChatGPT到GovGPT:生成式人工智能驱动的政务服务生态系统构建[J].电子政务,2023(9):25-38 WANG Bo,NIU Chaowen.From ChatGPT to GovGPT:the construction of government service ecosystem driven by generative artificial intelligence[J].E-Government,2023(9):25-38
    [15] 严昊,刘禹良,金连文,等.类ChatGPT大模型发展、应用和前景[J].中国图象图形学报,2023,28(9):2749-2762 YAN Hao,LIU Yuliang,JIN Lianwen,et al.The development,application,and future of LLM similar to ChatGPT[J].Journal of Image and Graphics,2023,28(9):2749-2762
    [16] Wu F,Hsiao S W,Lu P.An AIGC-empowered methodology to product color matching design[J].Displays,2024,81:102623
    [17] Liu G Y,Du H Y,Niyato D,et al.Semantic communications for artificial intelligence generated content (AIGC) toward effective content creation[J].arXiv e-Prints,2023,arXiv:2308.04942
    [18] 陈兵,董思琰.生成式人工智能的算法风险及治理基点[J].学习与实践,2023(10):22-31 CHEN Bing,DONG Siyan.Algorithm risks and governance bases of generative artificial intelligence[J].Study and Practice,2023(10):22-31
    [19] Li C,Zhang C,Waghwase A,et al.Generative AI meets 3D:a survey on text-to-3D in AIGC era [J].arXiv e-Print,2023,arXiv:2305.06131
    [20] Zhang Z C,Li C Y,Sun W,et al.A perceptual quality assessment exploration for AIGC images[C]//2023 IEEE International Conference on Multimedia and Expo (ICME).July 10-14,2023,Brisbane,Australia.IEEE,2023:440-445
    [21] Wang T,Zhang Y S,Qi S R,et al.Security and privacy on generative data in AIGC:a survey [J].arXiv e-Print,2023,arXiv:2309.09435
    [22] 王静静,叶鹰.生成式AI及其GPT类技术应用对信息管理与传播的变革探析[J].中国图书馆学报,2023,49(6):41-50 WANG Jingjing,YE Ying.A probe into the generative AI and GPT-type technical applications with transform for information management and communication[J].Journal of Library Science in China,2023,49(6):41-50
    [23] 王华树,刘世界.智慧翻译教育研究:理念、路径与趋势[J].上海翻译,2023(3):47-51,95 WANG Huashu,LIU Shijie.Smart translation education:concept,pathways and prospects[J].Shanghai Journal of Translators,2023(3):47-51,95
    [24] 万小军.智能文本生成:进展与挑战[J].大数据,2023,9(2):99-109 WAN Xiaojun.Intelligent text generation:recent advances and challenges[J].Big Data Research,2023,9(2):99-109
    [25] 祝智庭,戴岭,胡姣.高意识生成式学习:AIGC技术赋能的学习范式创新[J].电化教育研究,2023,44(6):5-14 ZHU Zhiting,DAI Ling,HU Jiao.Higher consciousness generative learning:innovation of learning paradigm enabled by AIGC technology[J].e-Education Research,2023,44(6):5-14
    [26] 张熙,杨小汕,徐常胜.ChatGPT及生成式人工智能现状及未来发展方向[J].中国科学基金,2023,37(5):743-750 ZHANG Xi,YANG Xiaoshan,XU Changsheng.Current state and future development directions of ChatGPT and generative artificial intelligence[J].Bulletin of National Natural Science Foundation of China,2023,37(5):743-750
    [27] 于天河,柳梦瑶.基于人眼视觉系统的图像质量评价方法[J].北京邮电大学学报,2023,46(2):129-136 YU Tianhe,LIU Mengyao.Image quality evaluation method based on human visual system[J].Journal of Beijing University of Posts and Telecommunications,2023,46(2):129-136
    [28] 柳梦瑶.基于人眼视觉系统的图像质量评价方法研究[D].哈尔滨:哈尔滨理工大学,2022 LIU Mengyao.Research on image quality evaluation method based on human visual system[D].Harbin:Harbin University of Science and Technology,2022
    [29] Lu Z Y,Huang D,Bai L,et al.Seeing is not always believing:a quantitative study on human perception of AI-generated images[J].arXiv e-Print,2023,arXiv:2304.13023
    [30] Hassan M,Bhagvati C.Structural similarity measure for color images[J].International Journal of Computer Applications,2012,43(14):7-12
    [31] 张彦超.基于边缘和颜色特征的图像检索技术研究[D].武汉:武汉理工大学,2010 ZHANG Yanchao.The research of image retrieval based on edge and color feature[D].Wuhan:Wuhan University of Technology,2010
    [32] 杨杨.基于均匀色差空间扩展的彩色图像质量评价研究[D].合肥:中国科学技术大学,2013 YANG Yang.Research of color image quality assessment based on expanded uniform color difference space[D].Hefei:University of Science and Technology of China,2013
    [33] 谢勤岚.图像降噪的自适应高斯平滑滤波器[J].计算机工程与应用,2009,45(16):182-184 XIE Qinlan.Adaptive Gaussian smoothing filter for image denoising[J].Computer Engineering and Applications,2009,45(16):182-184
    [34] 魏政刚,袁杰辉,蔡元龙.一种基于视觉感知的图像质量评价方法[J].电子学报,1999,27(4):79-82 WEI Zhenggang,YUAN Jiehui,CAI Yuanlong.A picture quality evaluation method based on human perception[J].Acta Electronica Sinica,1999,27(4):79-82
    [35] 金伟其,贾晓婷,高绍姝,等.彩色融合图像的质量主观评价[J].光学精密工程,2015,23(12):3465-3471 JIN Weiqi,JIA Xiaoting,GAO Shaoshu,et al.Subjective evaluation of quality for color fusion images[J].Optics and Precision Engineering,2015,23(12):3465-3471
    [36] 陈锐,江奕辉.生成式AI的治理研究:以ChatGPT为例[J].科学学研究,2024,42(1):21-30 CHEN Rui,JIANG Yihui.A study of the governance of generative AI:taking ChatGPT as an example[J].Studies in Science of Science,2024,42(1):21-30
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

XING Runmei, CHANG Shenglong, HE Kuan, ZHU Shuguang, GAO Qiong, HU Hao. AIGC image quality evaluation indicators[J]. Journal of Nanjing University of Information Science & Technology,2025,17(1):63-73

Copy
Share
Article Metrics
  • Abstract:73
  • PDF: 103
  • HTML: 21
  • Cited by: 0
History
  • Received:May 15,2024
  • Online: February 22,2025
Article QR Code

Address:No. 219, Ningliu Road, Nanjing, Jiangsu Province

Postcode:210044

Phone:025-58731025