Surface Defect Detection Algorithm Using a Lightweight Convolutional Block Attention Transformer
CSTR:
Author:
Affiliation:

1.School of Artificial Intelligence, Nanjing University of Information Science and Technology;2.School of Computer Science, Nanjing University of Information Science and Technology

  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • | |
  • Cited by [0]
  • | |
  • Comments
    Abstract:

    针对缺陷语义分割任务中缺陷与背景差异小以及同类缺陷间差异大的问题,本文提出了一种基于轻量化卷积块注意力Transformer的表面缺陷检测算法,即LCBAFormer,该算法旨在提高不同类型缺陷的分割准确率。本文首先设计了轻量化卷积块注意力模块LCBAM,通过结合通道注意力模块和空间注意力模块,提取有效的通道信息和空间信息,使模型更专注于局部缺陷特征信息,增强不同缺陷间的特征差异,减少同类缺陷间的差异。其次,本文提出轻量化的语义注入模块SIM,以逐步融合多尺度特征信息,提升网络对不同缺陷的定位和区分能力。实验结果表明,在NEU-Seg钢带缺陷数据集和MT-Defect磁瓦缺陷数据集上,本文提出的算法平均交并比(mIoU)分别为84.75%和79.46%mIoU,平均召回率(mRec)分别为92.29%和87.50%,平均F1分数(mF1)分别为91.52%和88.08%mF1,此外,算法的计算复杂度较低,每秒十亿次浮点运算次数(GFLOPs)分别为1.03和2.65。与主流算法相比,本文方法在参数量和检测性能上做到了较好的平衡,具有更小参数量和更好的分割结果。

    Reference
    [1] 罗东亮,蔡雨萱,杨子豪,等.工业缺陷检测深度学习方法综述[J].中国科学:信息科学,2022,52(06):1002-1039.
    [2] Dong H , Song K , He Y ,et al.PGA-Net: Pyramid Feature Fusion and Global Context Attention Network for Automated Surface Defect Detection[J].IEEE transactions on industrial informatics, 2020(16-12).DOI:10.1109/TII.2019.2958826.
    [3] Huang Y, Qiu C, Yuan K. Surface defect saliency of magnetic tile[J]. The Visual Computer, 2020, 36(1): 85-96.
    [4] Zhang D , Song K , Xu J ,et al.MCnet: Multiple Context Information Segmentation Network of No-Service Rail Surface Defects[J].IEEE Transactions on Instrumentation and Measurement, 2020, PP(99):1-1.DOI:10.1109/TIM.2020.3040890.
    [5] Xiangqian Peng,Youping Chen,Wenyong Yu,Zude Zhou,Guodong Sun.An online defects inspection method for float glass fabrication based on machine vision[J].The International Journal of Advanced Manufacturing Technology(自然科学版),2008,39(11-12):1180-1189.
    [6] Li Y , Liu M .Aerial Image Classification Using Color Coherence Vectors and Rotation Uniform Invariant LBP Descriptors[J].IEEE, 2018.DOI:10.1109/IAEAC.2018.8577881.
    [7] Cao J , Yang G , Yang X .A Pixel-Level Segmentation Convolutional Neural Network Based on Deep Feature Fusion for Surface Defect Detection[J].IEEE Transactions on Instrumentation and Measurement, 2020, PP(99):1-1.DOI:10.1109/TIM.2020.3033726.
    [8] He Y , Song K , Dong H ,et al.Semi-supervised defect classification of steel surface based on multi-training and generative adversarial network[J].Optics and Lasers in Engineering, 2019, 122:294-302.DOI:10.1016/j.optlaseng.2019.06.020.
    [9] Zhao Y, Hao K, He H, et al. A visual long-short-term memory based integrated CNN model for fabric defect image classification[J]. Neurocomputing, 2020, 380: 259-270.
    [10] Gao Y , Lin J , Xie J ,et al.A Real-Time Defect Detection Method for Digital Signal Processing of Industrial Inspection Applications[J].IEEE transactions on industrial informatics, 2021(17-5).DOI:10.1109/TII.2020.3013277.
    [11] Zhang J , Jing J , Lu P ,et al.Improved MobileNetV2-SSDLite for automatic fabric defect detection system based on cloud-edge computing[J].Measurement, 2022.
    [12] Zhang D , Song K , Xu J ,et al.MCnet: Multiple Context Information Segmentation Network of No-Service Rail Surface Defects[J].IEEE Transactions on Instrumentation and Measurement, 2020, PP(99):1-1.DOI:10.1109/TIM.2020.3040890.
    [13] Manan M , Chenhui S , Federated learning-based semantic segmentation for pixel-wise defect detection in additive manufacturing[J].Journal of Manufacturing Systems,2022.DOI:10.1016/j.jmsy.2022.06.010.
    [14] Tabernik D , Ela S , Skvar J ,et al.Segmentation-based deep-learning approach for surface-defect detection[J].Journal of Intelligent Manufacturing, 2020, 31.DOI:10.1007/s10845-019-01476-x.
    [15] Cui W, Song K, Feng H, et al. Autocorrelation Aware Aggregation Network for Salient Object Detection of Strip Steel Surface Defects[J]. IEEE Transactions on Instrumentation and Measurement, 2023.
    [16] Wang W, Xie E, Li X, et al. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 568-578.
    [17] Zhang W, Huang Z, Luo G, et al. Topformer: Token pyramid transformer for mobile semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 12083-12093.
    [18] Xie E, Wang W, Yu Z, et al. SegFormer: Simple and efficient design for semantic segmentation with transformers[J]. Advances in neural information processing systems, 2021, 34: 12077-12090.
    [19] Peng C, Zhang X, Yu G, et al. Large kernel matters--improve semantic segmentation by global convolutional network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4353-4361.
    [20] Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.
    [21] Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4510-4520.
    [22] Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-19.
    [23] Wang Q, Wu B, Zhu P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 11534-11542.
    [24] Zhu X, Hu H, Lin S, et al. Deformable convnets v2: More deformable, better results[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 9308-9316.
    [25] Dai J , Qi H , Xiong Y ,et al.Deformable Convolutional Networks[J].IEEE, 2017.DOI:10.1109/ICCV.2017.89.
    [26] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv preprint arXiv:1706.05587, 2017.
    [27] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440.
    [28] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2881-2890.
    [29] Fu J, Liu J, Tian H, et al. Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 3146-3154.
    [30] Zhao H, Qi X, Shen X, et al. Icnet for real-time semantic segmentation on high-resolution images[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 405-420.
    [31] Zhang J, Ding R, Ban M, et al. Fdsnet: An accurate real-time surface defect segmentation network[C]//ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022: 3803-3807.
    Related
    Cited by
    您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 05,2024
  • Revised:September 04,2024
  • Adopted:September 05,2024
Article QR Code

Address:No. 219, Ningliu Road, Nanjing, Jiangsu Province

Postcode:210044

Phone:025-58731025