Cooperative operation of source-load-storage resources based on BA-ELM and fuzzy chance constraints
Author:
Clc Number:

TM73;TP18

  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Reliable and effective medium- to long-term power demand forecasting serves as a crucial foundation for power generation and transmission.With the rapid development of China's renewable energy sector,the impact of wind and solar power volatility cannot be overlooked.Consequently,ensuring that future power system planning can economically and efficiently adapt to varying demand scenarios has become a topic of high concern.Here,we propose an integrated evaluation model for predictive dispatch based on the Extreme Learning Machine (ELM) optimized by the Bat Algorithm (BA),alongside the introduction of fuzzy parameters in the cooperative source-load-storage operation algorithm.Moreover,an analysis and research study has been conducted in northwest China as an example.The results show that this model can accurately forecast power demand under diverse development scenarios and provides scientific guidance for optimizing the planning of source-load-storage resources.

    Reference
    [1] 郑金山."双碳"目标下基于GM(1,1)算法的黑龙江省"电力及建成区绿化覆盖率"预测 [J].哈尔滨师范大学自然科学学报,2023,39(3):38-42 ZHENG Jinshan.Prediction of "power and built-up area green coverage" in Heilongjiang province based on GM(1,1) algorithm under "Double Carbon" target [J].Journal of Natural Sciences of Harbin Normal University,2023,39(3):38-42
    [2] 杜伟春,罗宏波,杨楠.改进灰色预测模型在电力负荷预测中的应用[J].湖南电力,2023,43(3):88-93 DU Weichun,LUO Hongbo,YANG Nan.Application of improved grey forecasting model in power load forecasting[J].Hunan Electric Power,2023,43(3):88-93
    [3] 邵佳佳,田一帆,黄露,等.面向电力市场交易的客户电量预测技术研究[J].电力与能源,2023,44(4):359-363 SHAO Jiajia,TIAN Yifan,HUANG Lu,et al.Research on customer power forecasting technology for electricity market trading[J].Power & Energy,2023,44(4):359-363
    [4] 李一,杨茂,苏欣.基于集成聚类及改进马尔科夫链模型的光伏功率短期预测[J].南方电网技术,2023,17(10):113-122 LI Yi,YANG Mao,SU Xin.Short-term prediction of photovoltaic power based on integrated clustering and improved Markov chain model [J].Southern Power Grid Technology,2023,17(10):113-122
    [5] 田佳,杨敏,王加庆,等.基于改进支持向量机的中长期电量预测算法设计[J].电子设计工程,2023,31(11):107-110,115 TIAN Jia,YANG Min,WANG Jiaqing,et al.Design of medium and long-term electricity forecast algorithm based on improved support vector machine[J].Electronic Design Engineering,2023,31(11):107-110,115
    [6] 李发崇,李鹏,高莲,等.基于多尺度模型融合和VMD-TCN-RF混合网络的短期电力负荷预测方法[J].电子器件,2023,46(4):1035-1042 LI Fachong,LI Peng,GAO Lian,et al.Short-term power load forecasting method based on multiscale model fusion and VMD-TCN-RF hybrid network[J].Chinese Journal of Electron Devices,2023,46(4):1035-1042
    [7] 黄星知,刘星,张文娟,等.改进决策树在电网超短期负荷预测中的应用[J].能源与环保,2022,44(7):265-271 HUANG Xingzhi,LIU Xing,ZHANG Wenjuan,et al.Application of improved decision tree in power grid ultra-short-term load forecast[J].China Energy and Environmental Protection,2022,44(7):265-271
    [8] 王克杰,张瑞.基于改进BP神经网络的短期电力负荷预测方法研究[J].电测与仪表,2019,56(24):115-121 WANG Kejie,ZHANG Rui.Research on short-term power load forecasting method based on improved BP neural network[J].Electrical Measurement & Instrumentation,2019,56(24):115-121
    [9] 奚莉莉,李程.基于BP神经网络的短期电力负荷预测方法研究[J].汉江师范学院学报,2023,43(3):23-26 XI Lili,LI Cheng.On short-term power load forecasting method based on BP neural network[J].Journal of Hanjiang Normal University,2023,43(3):23-26
    [10] 许言路,武志锴,朱赫炎,等.基于多尺度卷积神经网络的短期电力负荷预测[J].沈阳工业大学学报,2020,42(6):618-623 XU Yanlu,WU Zhikai,ZHU Heyan,et al.Short-term load forecasting based on multi-scale convolutional neural network[J].Journal of Shenyang University of Technology,2020,42(6):618-623
    [11] 陈晓红,王辉,李喜华.基于KPCA-CNN-DBiGRU模型的短期负荷预测方法[J].管理工程学报,2024,38(2):221-231 CHEN Xiaohong,WANG Hui,LI Xihua.A short-term load forecasting method based on KPCA-CNN-DBiGRU model [J].Journal of Management Engineering,2024,38(2):221-231
    [12] 高漪,周瑜,张安龙,等.整县光伏下基于个性化联邦学习的光伏出力及负荷功率预测[J].电网技术,2023,47(11):4629-4638 GAO Yi,ZHOU Yu,ZHANG Anlong,et al.A personalized federated learning framework for countrywide PV generation and load forecasting [J].Grid Technology,2023,47(11):4629-4638
    [13] 李玲玲,任琦瑛,宁楠,等.基于ISHO-ELM模型的短期电力负荷预测[J].天津工业大学学报,2023,42(3):73-80 LI Lingling,REN Qiying,NING Nan,et al.Short-term power load forecasting based on ISHO-ELM model[J].Journal of Tiangong University,2023,42(3):73-80
    [14] 王童.基于改进人工蜂鸟算法优化ELM的电力负荷预测[J].计算机时代,2023(6):43-47 WANG Tong.Optimized ELM based on improved artificial hummingbird algorithm for power load forecasting[J].Computer Era,2023(6):43-47
    [15] 刘晓宇,王斌.基于源网荷储优化的电力系统协同控制方法[J].电气自动化,2021,43(5):45-47 LIU Xiaoyu,WANG Bin.Cooperative control method for power systems based on optimization of source,network,load and storage[J].Electrical Automation,2021,43(5):45-47
    [16] 曾顺奇,汤森垲,程浩忠,等.考虑源网荷储协调优化的主动配电网网架规划[J].南方电网技术,2018,12(3):35-43 ZENG Shunqi,TANG Senkai,CHENG Haozhong,et al.Framework planning of active distribution network considering coordinated optimization of generation,network,load and storage[J].Southern Power System Technology,2018,12(3):35-43
    [17] 刘莹,宋丽敏,龚强,等.考虑需求响应的乡村综合能源系统源网荷储协调规划模型研究[J].湖南电力,2023,43(3):21-28 LIU Ying,SONG Limin,GONG Qiang,et al.Research on source-grid-load-storage coordinated planning model of rural integrated energy system considering demand response[J].Hunan Electric Power,2023,43(3):21-28
    [18] 杨谦,刘继春,蒋万枭.光伏不同渗透率下考虑源网荷储深度互动的电力系统调峰策略[J].电力建设,2021,42(9):74-84 YANG Qian,LIU Jichun,JIANG Wanxiao.Peak regulation strategy of power system considering the interaction of source-network-load-storage under different penetration rate of PV[J].Electric Power Construction,2021,42(9):74-84
    [19] 李永光,杨建兵,杜欣慧,等.考虑风电消纳的电-热综合能源系统优化运行[J].电力电容器与无功补偿,2021,42(5):228-235 LI Yongguang,YANG Jianbing,DU Xinhui,et al.Optimal operation of integrated electricity-heat energy system considering wind power consumption[J].Power Capacitor & Reactive Power Compensation,2021,42(5):228-235
    [20] 李旭东,艾欣,胡俊杰,等.计及碳交易机制的核-火-虚拟电厂三阶段联合调峰策略研究[J].电网技术,2019,43(7):2460-2470 LI Xudong,AI Xin,HU Junjie,et al.Three-stage combined peak regulation strategy for nuclear-thermal-virtual power plant considering carbon trading mechanism[J].Power System Technology,2019,43(7):2460-2470
    [21] 张东月,张照彦,王培光,等.基于预测偏差惩罚和绿色证书交易的商服中心综合能源系统日前调度优化[J].中国测试,2022,48(10):100-108 ZHANG Dongyue,ZHANG Zhaoyan,WANG Peiguang,et al.Day-ahead scheduling optimization of integrated energy system of commercial service center based on prediction deviation penalty and green certificate trading[J].China Measurement & Test,2022,48(10):100-108
    [22] 雷涛,鞠立伟,彭道鑫,等.计及碳排放权交易的风电储能协同调度优化模型[J].华北电力大学学报(自然科学版),2015,42(3):97-104 LEI Tao,JU Liwei,PENG Daoxin,et al.Collaborative scheduling optimization model of wind power and energy storage system considering the carbon emission trade[J].Journal of North China Electric Power University (Natural Science Edition),2015,42(3):97-104
    [23] 张林垚,黄东明,王彦铭,等.基于模糊与一致性复合智能算法的 "源-网-荷-储" 协同控制策略研究[J].电气传动,2021,51(17):44-51 ZHANG Linyao,HUANG Dongming,WANG Yanming,et al.Research on "source-grid-load-storage" cooperative control strategy based on fuzzy and consistent composite intelligent algorithm[J].Electric Drive,2021,51(17):44-51
    [24] 崔杨,周慧娟,仲悟之,等.考虑源荷两侧不确定性的含风电电力系统低碳调度[J].电力自动化设备,2020,40(11):85-91 CUI Yang,ZHOU Huijuan,ZHONG Wuzhi,et al.Low-carbon scheduling of power system with wind power considering uncertainty of both source and load sides[J].Electric Power Automation Equipment,2020,40(11):85-91
    [25] 杜忠明,王雪松."十三五" 中国电力需求水平预测[J].中国电力,2017,50(9):11-17 DU Zhongming,WANG Xuesong.Electricity consumption forecasting of China during the period of the 13th five-year[J].Electric Power,2017,50(9):11-17
    [26] Silitonga A S,Masjuki H H,Ong H C,et al.Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine[J].Energy,2018,159:1075-1087
    [27] Zhang X H,Zhu Q X,He Y L,et al.A novel robust ensemble model integrated extreme learning machine with multi-activation functions for energy modeling and analysis:application to petrochemical industry[J].Energy,2018,162:593-602
    [28] Li W,Zhang S H,Lu C.Research on the driving factors and carbon emission reduction pathways of China's iron and steel industry under the vision of carbon neutrality[J].Journal of Cleaner Production,2022,361:132237
    [29] 于德鳌,李慧,刘思嘉,等.基于改进萤火虫算法的含风电系统环境经济调度[J].电力科学与技术学报,2020,35(2):84-92 YU Deao,LI Hui,LIU Sijia,et al.Environmental economic dispatch of power system integrated with wind power based on an improved glowworm swarm optimization[J].Journal of Electric Power Science and Technology,2020,35(2):84-92
    [30] 王晓彬,孟婧,石访,等.煤电与清洁电源协同演进优化模型及综合评价体系研究[J].电力系统保护与控制,2022,50(13):43-52 WANG Xiaobin,MENG Jing,SHI Fang,et al.An optimization model and comprehensive evaluation system for the synergistic evolution of coal-fired power plants and clean power sources[J].Power System Protection and Control,2022,50(13):43-52
    [31] 喻鑫,胡志坚,陈锦鹏,等.阶梯碳下考虑P2G-CCS与供需灵活响应的IES优化调度[J/OL].武汉大学学报(工学版):1-14[2024-02-04].http://kns.cnki.net/kcms/detail/42.1675.T.20230518.0913.002.html YU Xin,HU Zhijian,CHEN Jinpeng,et al.Optimal dispatch of integrated energy system considering P2G-CCS coupling and supply-demand flexible response under stepped carbon [J].Journal of Wuhan University (Engineering Edition):1-14[2024-02-04].http://kns.cnki.net/kcms/detail/42.1675.T.20230518.0913.002.html
    [32] Qi S Z,Cheng S H,Tan X J,et al.Predicting China's carbon price based on a multi-scale integrated model[J].Applied Energy,2022,324:119784
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHANG Zelong, CHEN Baosheng, YANG Yan, JIN Panlong, LIU Tong, ZHAO Jiaqi. Cooperative operation of source-load-storage resources based on BA-ELM and fuzzy chance constraints[J]. Journal of Nanjing University of Information Science & Technology,2024,16(5):618-629

Copy
Share
Article Metrics
  • Abstract:39
  • PDF: 234
  • HTML: 28
  • Cited by: 0
History
  • Received:January 10,2024
  • Online: October 30,2024
  • Published: September 28,2024
Article QR Code

Address:No. 219, Ningliu Road, Nanjing, Jiangsu Province

Postcode:210044

Phone:025-58731025