Motion Blurred Image Restoration Based on Multi-Weight Adaptive Interaction
Author:
Affiliation:

1.Shenyang Ligong University;2.Shenyang Shenyang Institute of Technology Shenyang Zhongke Bowei Technology Co., Ltd.University

Fund Project:

National key research and development plan 2017YFC0821001-2

  • Article
  • | |
  • Metrics
  • |
  • Reference [35]
  • | |
  • Cited by [0]
  • | |
  • Comments
    Abstract:

    To address the issue of inefficient processing of machine vision tasks in industrial environments caused by uneven blurring in images captured in moving scenes, a motion blur image restoration algorithm based on multi-weight adaptive interaction is proposed. Firstly, a multi-strategy feature extraction module is employed to extract shallow and critical texture information from blurred images and smooth noise. Then, a dual-channel adaptive weight extraction module is proposed to capture spatial and pixel weight information from degraded images. Meanwhile, a residual semantic block is constructed to deeply mine the deep semantic information of the image and gradually compensate this information into the network. Finally, a weighted feature fusion module is designed to fuse the multi-spatial weighted features extracted by the network, and multiple loss functions are combined to further improve image quality. The subjective, objective and ablation experimental results of the proposed algorithm in the standard data set show that the SSIM and PSNR indexes in the standard data set reach 0.93 and 31.89, and each module can be well coordinated, which has significant advantages in restoring non-uniform blurred images in moving scenes.

    Reference
    [1] 姚镇海,周建平,邱新法.基于高速公路视频图像的能见度计算[J].南京信息工程大学学报(自然科学版),2019,11(1):85-90.
    YAO Zhenhai, Zhou Jianping, QIU Xinfa. Visibility calculations based on highway video images[J]. Journal of Nanjing University of Information Science & Technology(Natural Science Edition), 2019,11(1):85-90.
    [3] [2]成丽波,董伦,李喆,等.基于NSST与稀疏先验的遥感图像去模糊方法[J].吉林大学学报(理学版),2024,62(1):106-115.
    CHENG Libo, DONG Lun, LI Zhe, et al. Remote Sensing Image Deblurring Method Based on NSST and Sparse Prior[J]. Journal of Jilin University (Science Edition), 2024,62(1):106-115.
    [5] [3]杨琼,况姗芸,冯义东.基于全变差模型与卷积神经网络的模糊图像恢复[J].南京理工大学 学报,2022,46(3):277-283.
    YANG Qiong, KUANG Shanyun, FENG Yidong. Fuzzy Image Restoration Based on TV Model and CNN [J]. Journal of Nanjing University of Science and Technology, 2022,46(3):277-283.
    [7] [4]Sun J, Cao W, Xu Z, et al. Learning a convolutional neural network for non-uniform motion blur removal[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 769-777.
    [8] [5]Xu X, Pan J, Zhang Y J, et al. Motion blur kernel estimation via deep learning[J]. IEEE Transactions on Image Processing, 2017, 27(1): 194 - 205.
    [9] [6]Xu L, Zheng S, Jia J. Unnatural l0 sparse representation for natural image deblurring [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2013: 1107-1114.
    [10] [7]Ren W, Zhang J, Pan J, et al. Deblurring dynamic scenes via spatially varying recurrent neural networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2021,44(8):3974-3987.
    [11] [8]Wang Z, Cun X, Bao J, et al. Uformer: A General U-Shaped Transformer for Image Restoration[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 17662–17672.
    [12] [9]张玉波, 王建阳, 韩爽, 等. 一种非对称的轻量级图像盲去模糊网络[J]. 吉林大学学报: 理学版, 2023,61(2): 362-370.
    ZHANG Yubo, WANG Jianyang, HAN Shuang, et al. An asymmetric lightweight image blind deblurring network[J]. Journal of Jilin University (Science Edition), 2023, 61(2): 362-370.
    [14] [10]刘忠洋,周杰,陆加新,等.基于注意力机制的多尺度特征融合图像去雨方法[J].南京信息工程大学学报(自然科学版),2023,15(05):505-513.
    LIU Zhongyang, ZHOU Jie, LU Jiaxin, et al. Multi-scale feature fusion image deraining method based on attention mechanism[J]. Journal of Nanjing University of Information Science & Technology(Natural Science Edition), 2023, 15(05): 505-513.
    [16] [11]Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.
    [17] [12]Zhao H, Kong X, He J, et al. Efficient image super-resolution using pixel attention[C]//Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16. Springer International Publishing, 2020: 56-72.
    [18] [13]Qin X, Wang Z, Bai Y, et al. FFA-Net: Feature fusion attention network for single image dehazing[C]//Proceedings of the AAAI conference on artificial intelligence. 2020, 34(07): 11908-11915.
    [19] [14]Qin Z, Zhang P, Wu F, et al. Fcanet: Frequency channel attention networks[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 783-792.
    [20] [15]陈栋,李明,李莉,等.基于双池化注意力机制的高光谱图像分类算法[J].南京信息工程大学学报(自然科学版),2023,15(04):393-402.
    CHEN Dong, LI Ming, LI Li, et al. Hyperspectral image classification based on double pool attention mechanism[J]. Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2023,15(04):393-402.
    [22] [16]Zhong F, He K, Ji M, et al. Optimizing vitiligo diagnosis with ResNet and Swin transformer deep learning models: a study on performance and interpretability[J]. Scientific Reports, 2024, 14(1): 9127.
    [23] [17]杜洪波,袁雪丰,刘雪莉,等.基于扩散过程的生成对抗网络图像修复算法[J/OL].南京信息工程大学学报:1-11[2024-04-26].
    DU Hongbo, YUAN Xuefeng, LIU Xueli, et al. Generative Adversarial Network Image Restoration Algorithm Based on Diffusion Process[J/OL]. Journal of Nanjing University of Information Science & Technology: 1-11 [2024-04-26].
    [25] [18]Gao X, Fang Y. A note on the generalized degrees of freedom under the L1 loss function[J]. Journal of statistical planning and inference, 2011, 141(2): 677-686.
    [26] [19]Zuo Y, Wu Q, Fang Y, et al. Multi-scale frequency reconstruction for guided depth map super-resolution via deep residual network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(2): 297-306.
    [27] [20]Abubakar A B, Kumam P, Mohammad H, et al. A Barzilai-Borwein gradient projection method for sparse signal and blurred image restoration[J]. Journal of the Franklin Institute, 2020, 357(11): 7266-7285.
    [28] [21]Zhang K, Luo W, Zhong Y, et al. Deblurring by realistic blurring[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 2737-2746.
    [29] [22]Zhang H, Dai Y, Li H, et al. Deep stacked hierarchical multi-patch network for image deblurring[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 5978-5986.
    [30] [23]Park D, Kang D U, Kim J, et al. Multi-temporal recurrent neural networks for progressive non-uniform single image deblurring with incremental temporal training[C]//European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 327-343.
    [31] [24]Sara U, Akter M, Uddin M S. Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study[J]. Journal of Computer and Communications, 2019, 7(3): 8-18.
    [32] [25]Tanchenko A. Visual-PSNR measure of image quality[J]. Journal of Visual Communication and Image Representation, 2014, 25(5): 874-878.
    [33] [26]Feng Y, Han B, Wang X, et al. Self-Supervised Transformers for Unsupervised SAR Complex Interference Detection Using Canny Edge Detector[J]. Remote Sensing, 2024, 16(2): 306.
    [34] [27]Lindenberger P, Sarlin P E, Pollefeys M. Lightglue: Local feature matching at light speed[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 17627-17638.
    [35] [28]Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 7464-7475.
    Related
    Cited by
    您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:57
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:April 26,2024
  • Revised:June 02,2024
  • Adopted:June 03,2024
Article QR Code

Address:No. 219, Ningliu Road, Nanjing, Jiangsu Province

Postcode:210044

Phone:025-58731025