The small object detection method based on dual-stream contrastive feature learning and image multi-scale degradation
Author:
Affiliation:

1.Civil Aviation Flight University of China, Institute of Electronic and Electrical Engineering;2.Southwest Institute of Technical Physics

  • Article
  • | |
  • Metrics
  • |
  • Reference [45]
  • | |
  • Cited by
  • | |
  • Comments
    Abstract:

    In addressing challenges such as small target sizes, blurred target features, and difficulty distinguishing between targets and backgrounds in small object detection tasks, a method based on dual-stream contrastive feature learning and image multi-scale degradation augmentation is proposed. Firstly, the input images of the contrastive learning model are subjected to multi-scale degradation augmentation, enhancing the model's perception of capturing small targets. Secondly, contrastive learning representations are conducted in both spatial and frequency domains simultaneously to learn more discriminative target recognition features, improving the model's ability to differentiate between targets and backgrounds and thus enhancing small object detection. To validate the effectiveness of the proposed method, ablation experiments are designed, and the detection performance is compared with other advanced algorithms. Experimental results show that the proposed method achieves a 3.6% improvement in average precision (mAP) compared to the baseline algorithm on the MS COCO datasets, a 7.7% improvement in average precision for small objects (APS) compared to mainstream advanced algorithms. On the VisDrone2019 datasets, the proposed method achieves a 2.4% increase in mAP compared to the baseline algorithm, demonstrating comprehensive performance superiority over the baseline algorithm and other mainstream advanced algorithms. Visual analysis of detection results indicates significant improvements in false negatives and false positives for small object detection using the proposed method.

    Reference
    [1] 靳晓芳, 岳鼎, 刘金羽. 基于 YOLOv3-tiny 的智能侦察虚拟训练系统研究[J]. Journal of Ordnance Equipment Engineering, 2023, 44(8): 186-190.
    JIN Xiaofang, YUE Ding, LIU Jinyu. Research on virtual intelligent reconnaissance training system based on YOLOv3 tiny[J]. Journal of Ordnance Equipment Engineering, 2023, 44(8): 186-190.
    [3] [2]刘安邦,施赛楠,杨静,曹鼎.基于虚警可控梯度提升树的海面小目标检测[J].南京信息工程大学学报(自然 科学版),2022,14(3):341-347
    LIU Anbang, SHI Sainan, YANG Jing, CAO Ding. Sea-surface small target detection based on false-alarm- controllable gradient boosting decision tree[J]. Journal of Nanjing University of Information Science & Technology, 2022,14(3):341-347
    [5] [3]李伟文, 缪小冬, 顾曹雨. 融合点柱网络和 DETR 的三维复杂道路目标检测[J]. 重庆理工大学学报 (自然 科学), 2023, 37(11): 32-39.
    Li Weiwen, Miao Xiaodong, Gu Caoyu. Fusion of Point-Pillar Network and DETR for 3D Complex Road Object Detection[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(11): 32-39.
    [7] [4]温秀兰,焦良葆,李子康,姚波,唐国寅.复杂环境下小尺度烟火目标检测研究[J].南京信息工程大学学报(自 然科学版),2023,15(6):676-683
    WEN Xiulan, JIAO Liangbao, LI Zikang, YAO Bo, TANG Guoyin. Small scale smoke & fire target detection in complex environment[J]. Journal of Nanjing University of Information Science & Technology, 2023,15(6):676-683
    [9] [5]Girshick R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1440- 1448.
    [10] [6]He K, Gkioxari G, Dollár P, et al. Mask r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2961-2969.
    [11] [7]Zhang Y, Chi M. Mask-R-FCN: A deep fusion network for semantic segmentation[J]. IEEE Access, 2020, 8: 155753-155765.
    [12] [8]Zhai S, Shang D, Wang S, et al. DF-SSD: An improved SSD object detection algorithm based on DenseNet and feature fusion[J]. IEEE access, 2020, 8: 24344-24357.
    [13] [9]Mao Q C, Sun H M, Liu Y B, et al. Mini-YOLOv3: real-time object detector for embedded applications[J]. Ieee Access, 2019, 7: 133529-133538.
    [14] [10]Zhu X, Lyu S, Wang X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 2778-2788.
    [15] [11]Betti A, Tucci M. YOLO-S: A Lightweight and Accurate YOLO-like Network for Small Target Detection in Aerial Imagery[J]. Sensors, 2023, 23(4): 1865.
    [16] [12]Wei Z, Liang D, Zhang D, et al. Learning calibrated-guidance for object detection in aerial images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 2721-2733.
    [17] [13]Gong Y, Yu X, Ding Y, et al. Effective fusion factor in FPN for tiny object detection[C]//Proceedings of the IEEE/CVF winter conference on applications of computer vision. 2021: 1160-1168.
    [18] [14]Zhu X, Liang B, Fu D, et al. Airport small object detection based on feature enhancement[J]. IET Image Processing, 2022, 16(11): 2863-2874.
    [19] [15]秦强强, 廖俊国, 周弋荀. 基于多分支混合注意力的小目标检测算法[J]. 计算机应用, 2023, 43(11): 3579- 3586.
    Qiangqiang QIN, Junguo LIAO, Yixun ZHOU. Small object detection algorithm based on split mixed attention[J]. Journal of Computer Applications, 2023, 43(11): 3579-3586.
    [21] [16]李利霞, 王鑫, 王军, 等. 基于特征融合与注意力机制的无人机图像小目标检测算法[J]. 图学学报, 2023, 44(4): 658-666.
    LI Li-xia, WANG Xin, WANG Jun, ZHANG You-yuan. Small object detection algorithm in UAV image based on feature fusion and attention mechanism[J]. Journal of Graphics, 2023, 44(4): 658-666.
    [23] [17]He K, Fan H, Wu Y, et al. Momentum contrast for unsupervised visual representation learning[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 9729-9738.
    [24] [18]Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125.
    [25] [19]Li H, Xiong P, An J, et al. Pyramid attention network for semantic segmentation[J]. arXiv preprint arXiv:1805.10180, 2018.
    [26] [20]Zheng Z, Wang P, Liu W, et al. Distance-IoU loss: Faster and better learning for bounding box regression [C]//Proceedings of the AAAI conference on artificial intelligence. 2020, 34(07): 12993-13000.
    [27] [21]Lin T Y, Maire M, Belongie S, et al. Microsoft coco: Common objects in context[C]//Computer Vision– ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer International Publishing, 2014: 740-755.
    [28] [22]Du D, Zhu P, Wen L, et al. VisDrone-DET2019: The vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF international conference on computer vision workshops. 2019: 0-0.
    [29] [23]刘建政,梁鸿,崔学荣等.融入特征融合与特征增强的SSD目标检测[J].计算机工程与应 用,2022,58(11):150-159.
    LIU Jianzheng, LIANG Hong, CUI Xuerong, ZHONG Min, LI Chuanxiu. SSD Visual Target Detector Based on Feature Integration and Feature Enhancement[J]. Computer Engineering and Applications, 2022, 58(11): 150-159.
    [31] [24]Meng D, Chen X, Fan Z, et al. Conditional detr for fast training convergence[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 3651-3660.
    [32] [25]Wang Y, Zhang X, Yang T, et al. Anchor detr: Query design for transformer-based detector[C]//Proceedings of the AAAI conference on artificial intelligence. 2022, 36(3): 2567-2575.
    [33] [26]Liu S, Li F, Zhang H, et al. Dab-detr: Dynamic anchor boxes are better queries for detr[J]. arXiv preprint arXiv:2201.12329, 2022.
    [34] [27]Gao Z, Wang L, Han B, et al. Adamixer: A fast-converging query-based object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 5364-5373.
    [35] [28]Li F, Zhang H, Liu S, et al. Dn-detr: Accelerate detr training by introducing query denoising[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 13619-13627.
    [36] [29]Huang X, Wang X, Lv W, et al. PP-YOLOv2: A practical object detector[J]. arXiv preprint arXiv:2104.10419, 2021.
    [37] [30]Meng D, Chen X, Fan Z, et al. Conditional detr for fast training convergence[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 3651-3660.
    [38] [31]Shang J, Wang J, Liu S, et al. Small Target Detection Algorithm for UAV Aerial Photography Based on Improved YOLOv5s[J]. Electronics, 2023, 12(11): 2434.
    [39] [32]Liu H, Duan X, Lou H, et al. Improved GBS-YOLOv5 algorithm based on YOLOv5 applied to UAV intelligent traffic[J]. Scientific Reports, 2023, 13(1): 9577.
    [40] [33]Liu H, Sun F, Gu J, et al. Sf-yolov5: A lightweight small object detection algorithm based on improved feature fusion mode[J]. Sensors, 2022, 22(15): 5817.
    [41] [34]Ding K, Li X, Guo W, et al. Improved object detection algorithm for drone-captured dataset based on yolov5[C]//2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE). IEEE, 2022: 895-899.
    [42] [35]吴明杰, 云利军, 陈载清, 钟天泽. 改进YOLOv5s的无人机视角下小目标检测算法[J]. 计算机工程与应用, 2024, 60(2): 191-199.
    WU Mingjie, YUN Lijun, CHEN Zaiqing, ZHONG Tianze. Improved YOLOv5s Small Object Detection Algorithm in UAV View[J]. Computer Engineering and Applications, 2024, 60(2): 191-199.
    [44] [36]刘展威,陈慈发,董方敏.基于YOLOv5s的航拍小目标检测改进算法研究[J].无线电工 程,2023,53(10):2286-2294.
    Liu Zhanwei, Chen Cifa, Dong Fangmin. Research on Improved Algorithm for Small Aerial Target Detection Based on YOLOv5s[J]. Radio Engineering, 2023, 53(10): 2286-2294.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:90
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:January 25,2024
  • Revised:March 20,2024
  • Adopted:March 20,2024
Article QR Code

Address:No. 219, Ningliu Road, Nanjing, Jiangsu Province

Postcode:210044

Phone:025-58731025