Research on wheat development stage recognition based on I_CBAM-DenseNet model
Author:
Affiliation:

Nanjing University of Information Science and Technology

Fund Project:

National Natural Science Foundation of China (51305210);Jiangsu Provincial Natural Science Foundation Project(BK20150924)

  • Article
  • | |
  • Metrics
  • |
  • Reference [25]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Aiming at the problems of low efficiency of manual observation and low recognition accuracy of crop development stage in China, a wheat development stage recognition method based on I_CBAM-DenseNet model is proposed. The method takes a dense connected convolutional network (DenseNet) as the backbone extraction network and incorporates a convolutional attention module CBAM. firstly, the spatial attention module (SAM) and channel attention module (CAM) in CBAM are changed from the traditional serial connection to parallel connection, and the improved CBAM (I_CBAM) is inserted into the last dense network of DenseNet. An I_CBAM-DenseNet model is constructed, and then seven important development periods of wheat are selected for automatic identification. In order to maximize the extraction of the feature information of wheat, the ultra-green feature of ExG factor and the the maximum inter-class variance method are combined to segment the acquired wheat images. The changes in accuracy and loss values of the models I_CBAM-DenseNet, AlexNet, ResNet, DenseNet, CBAM-DenseNet and VGG are comparatively analysed. The results show that the model built by taking the convolutional neural network based on I_CBAM-DenseNet has an accuracy of 99.64%, which is higher than the comparison models.

    Reference
    [1] 郑玲. 小麦生物量田间快速测量方法研究[D].西北农林科技大学, 2015.
    [2] 徐建鹏, 王杰, 徐祥, 等. 基于RAdam卷积神经网络的水稻生育期图像识别[J]. 农业工程学报, 2021, 37(08): 143-150.
    [3] 陆佳岚, 王净, 马成, 等. 长江流域中稻产量和品质性状差异与其生育期气象因子的相关性[J]. 江苏农业学报, 2020,36(06): 1361-1372.
    [4] 李要中, 刘钧, 马尚昌. 基于AM335X的农作物气象自动观测系统设计[J]. 气象科技, 2017, 45(05): 818-824.DOI:10.19517/j.1671-6345.20160579.
    [5] Priya, C.A.; Balasaravanan, T.; Thanamani, A.S. An efficient leaf recognition algorithm for plant classification using support vector machine. In Proceedings of the 21st International Conference on Pattern Recognition, Tsukuba, Japan, 11–15 November 2012; pp. 428–432.
    [6] 安国平, 姜长生, 吴庆宪. 基于PCNN和SVM的图像识别方法研究[J]. 电光与控制, 2008(10): 42-46.
    [7] 徐慧智, 闫卓远, 常梦莹. 一种结合ResNet和迁移学习的交通标志识别方法[J]. 重庆理工大学学报(自然科学), 2023, 37(03): 264-273.
    [8] 廖强, 王宇. 基于迁移学习ResNet50的表情识别[J]. 中国科技信息, 2023, No.698(09): 89-92.
    [9] 张超群, 易云恒, 周文娟, 等. 基于深度学习与数据增强技术的小样本岩石分类[J]. 科学技术与工程, 2022, 22(33): 14786-14794.
    [10] 牛群峰, 袁强, 靳毅, 等. 基于改进VGG16卷积神经网络的烟丝类型识别[J]. 国外电子测量技术, 2022, 41(09): 149-154.
    [11] 陈永卫, 韩俊英, 任希同. 基于改进型VGG的苹果果实品种识别[J] . 软件, 2022, 43(05): 32-37.
    [12] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.
    [13] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-19.
    [14] Wang Q, Wu B, Zhu P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 11534-11542.
    [15] Wang S H, Fernandes S L, Zhu Z, et al. AVNC: attention-based VGG-style network for COVID-19 diagnosis by CBAM[J]. IEEE Sensors Journal, 2021, 22(18): 17431-17438.
    [16] Wang M H, Wu Z X, Zhou Z. Fine-grained Identification Research of Crop Pests and Diseases Based on Improved CBAM via Attention[J]. Trans. Chin. Soc. Agric. Mach, 2021, 52: 239-247.
    [17] 孔建磊, 金学波, 陶治, 等. 基于多流高斯概率融合网络的病虫害细粒度识别[J]. 农业工程学报, 2020, 36(13): 148-157.
    [18] 张超群, 易云恒, 周文娟, 等. 基于深度学习与数据增强技术的小样本岩石分类[J]. 科学技术与工程, 2022, 22(33): 14786-14794.
    [19] Yu D, Yang J, Zhang Y, et al. Additive DenseNet: Dense connections based on simple addition operations[J]. Journal of Intelligent Fuzzy Systems, 2021, 40(3): 5015-5025.
    [20] 张芸德. 基于深度特征学习和多级SVM的玉米生长期识别研究[D].华中师范大学,2018.
    [21] Zhou T, Ye X Y, Lu H L, et al. Dense convolutional network and its application in medical image analysis[J]. BioMed Research International, 2022, 2022.
    [22] 王善平. 基于生长期识别与路径规划的喷杆喷雾机精准施药决策系统研制[D]. 山东农业大学, 2021. DOI:10.27277/d.cnki.gsdnu.2021.000175.
    [23] 李妍. 基于ResNet算法的垃圾图像识别分类研究[J]. 长江信息通信, 2021, 34(05): 25-27.
    [24] 扶兰兰, 黄昊, 王恒, 等. 基于Swin Transformer模型的玉米生长期分类[J]. 农业工程学报, 2022, 38(14): 191-200.
    [25] 贾璐, 叶中华. 基于注意力机制和特征融合的葡萄病害识别模型[J/OL].农业机械学报: 1-15[2023-04-20].
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:373
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:July 22,2023
  • Revised:September 11,2023
  • Adopted:September 15,2023
Article QR Code

Address:No. 219, Ningliu Road, Nanjing, Jiangsu Province

Postcode:210044

Phone:025-58731025