Cyber Attack Detection Method Aiming at Phasor Meaurement State Estimation
CSTR:
Affiliation:

NARI Group

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • Article
  • | |
  • Metrics
  • |
  • Reference [35]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    With the wide application of communication technology in the smart grid, the threat of information attack to the safe operation of the grid also follows. Attacks based on state estimation using phasor measurement techniques in power systems are difficult to detect successfully. Aiming at this problem, this paper proposes an intelligent attack detection method based on phasor measurement data state estimation for power systems. In this method, the self-encoder is used to extract the features of the power grid measurement data, and the feature dimension is gradually reduced by extracting the features multiple times. The final extracted information is subjected to supervised learning through the softmax layer, resulting in an attack detection algorithm based on stacked autoencoders. Aiming at the overfitting problem of autoencoders, an attack detection method based on noise reduction autoencoders is further proposed. The proposed method is simulated and verified by IEEE-118 node test system. The results show that the proposed attack detection method has higher computational accuracy and efficiency than other methods.

    Reference
    [1] 邓勇, 彭敏放, 刘靖雯. 电力信息物理系统建模和信息攻击机制分析[J/OL]. 电力系统及其自动化学报, 2021, 33(10):10-17.
    [2] Deng Yong, Peng Minfang, Liu Jingwen. Modeling of Cyber Power Physical System and Analysis of Information Attack Mechanism[J/OL]. Proceedings of the CSU-EPSA, 2021, 33(10):10-17.
    [3] [2] 安宇, 刘东, 陈飞, 等. 考虑信息攻击的配电网信息物理运行风险分析[J]. 电网技术, 2019, 43(07):2345-2352.
    [4] An Yu, Liu Dong, Chen Fei, et al. Risk Analysis of Cyber Physical Distribution Network Operation Considering Cyber Attack[J]. Power System Technology, 2019, 43(07):2345-2352.
    [5] [3] 褚晨杰, 吕干云, 吕经纬, 等. 基于PMU/SCADA混合量测的电力系统鲁棒状态估计[J]. 南京工程学院学报(自然科学版), 2020, 18(04):14-19.
    [6] Chu Chenjie, Lv Ganyun, Lv Jingwei, et al. Robust State Estimation of Power System Based on PMU and SCADA Hybrid Measurement[J]. Journal of Nanjing Institute of Technology (Natural Science Edition), 2020, 18(04):14-19.
    [7] [4] 王艳丽, 吕海翠, 宋佳. 高效物联网虚假数据注入攻击智能防御仿真[J]. 计算机仿真, 2020, 37(09):258-261+337.
    [8] Wang Yanli, Lv Haicui, Song Jia. Intelligent Defense Simulation of High Efficient Internet of Things False Data Injection Attack[J]. Computer Simulation, 2020, 37(09):258-261+337.
    [9] [5] 田继伟, 王布宏, 李腾耀, 等. 智能电网虚假数据注入攻击研究进展与展望[J]. 网络空间安全, 2019, 10(09):73-84.
    [10] Tian Jiwei, Wang Buhong, Li Tengyao, et al. Research progress and prospects of false data injection attacks in smart grid[J]. Cyberspace Security, 2019, 10(09):73-84.
    [11] [6] 田继伟, 王布宏, 尚福特, 等. 基于数据驱动的稀疏虚假数据注入攻击[J]. 电力自动化设备, 2017, 37(12):52-59.
    [12] Tian Jiwei, Wang Buhong, Shang Fute, et al. Sparse false data injection attacks based on data driven[J]. Electric Power Automation Equipment, 2017, 37(12):52-59.
    [13] [7] 蔡星浦, 王琦, 邰伟, 等. 基于多阶段博弈的电力CPS虚假数据注入攻击防御方法[J]. 电力建设, 2019, 40(05):48-54.
    [14] Cai Xingpu, Wang Qi, Tai Wei, et al. A Multi-Stage Game Based Defense Method against False
    [15] Data Injection Attack on Cyber Physical Power System[J]. Electric Power Construction, 2019, 40(05):48-54.
    [16] [8] 阮兆文, 孟干, 周冬青, 等. 智能电网中的虚假数据注入攻击检测方法研究[J]. 自动化与仪器仪表, 2019, (03):49-52.
    [17] Ruan Zhaowen, Meng Gan, Zhou Dogqing, et al. Research on false data injection attack detection method in smart grid[J]. Automation and Instrumentation, 2019, (03):49-52.
    [18] [9] 曾俊娆, 李鹏, 高莲, 等. 基于TNPE的智能电网虚假数据注入攻击检测[J]. 中国安全生产科学技术, 2021, 17(03):124-129.
    [19] Zeng Junyao, LiPeng ,Gao Lian, et al. Detection of false data injection attacks in smart grids based on time neighbor preserving embedding ( TNPE)[J]. Journal of Safety Science and Technology, 2021, 17(03):124-129.
    [20] [10] 陈冰, 唐永旺. 基于Bi-GRU和自注意力的智能电网虚假数据注入攻击检测[J]. 计算机应用与软件, 2021, 38(07):339-344+349.
    [21] Chen Bing, Tang Yongwang. False Data Injection Attacks Detection in Smart Grid Based on Bi-GRU and Self-Attention[J]. Computer Applications and Software, 2021, 38(07):339-344+349.
    [22] [11] 陈碧云, 李弘斌, 李滨. 伪量测建模与AUKF在配电网虚假数据注入攻击辨识中的应用[J]. 电网技术, 2019, 43(09):3226-3236.
    [23] Chen Biyun, Li Hongbin, Li Bin. Application Research on Pseudo Measurement Modeling and UKF in FDIAs Identification of Distribution Network[J]. Power System Technology, 2019, 43(09):3226-3236.
    [24] [12] 罗仁泽, 王瑞杰, 张可, 等. 残差卷积自编码网络图像去噪方法[J]. 计算机仿真, 2021, 38(05):455-461.
    [25] Luo Renze, Wang Ruijie, Zhang Ke, et al. Image Denoising Method of Rsidual Convolution auto-encoder Network[J]. Computer Simulation, 2021, 38(05):455-461.
    [26] [13] 沈先耿. 融合深度信息和稀疏自编码的手势识别算法[J]. 计算机仿真, 2019, 36(01):397-402.
    [27] Shen Xiangeng. The Gestures Recognition Algorithm Fusing Depth Information and Sparse AutoEncoder[J]. Computer Simulation, 2019, 36(01):397-402.
    [28] [14] 张忠林, 杨朴舟. 基于自编码器语义哈希的大规模文本预处理[J]. 计算机仿真, 2019, 36(03):225-229+260.
    [29] Zhang Zhonglin, Yang Puzhou. Large Scale Text Preprocessing Based on Self-Encoder Semantic Hashing[J]. Computer Simulation, 2019, 36(03):225-229+260.
    [30] [15] 王惠中, 贺珂珂, 房理想. 深度学习在电机故障诊断中的应用研究[J]. 计算机仿真, 2019, 36(10):423-428.
    [31] Wang Huizhong, He Keke, Fang Lixiang. Application of deep Learning in Motor Fault Diagnosis[J]. Computer Simulation, 2019, 36(10):423-428.
    [32] [16] 史晗璋, 谢林柏, 吴治海, 等. 基于编码策略的电网假数据注入攻击检测[J]. 信息与控制, 2021, 50(04):419-426.
    [33] Shi Hanzhang, Xia Linbai, Wu Zhihai, et al. Detection of False Data Injection Attacks in Power Grid Based on Coding Schemes[J]. Information and Control, 2021, 50(04):419-426.
    [34] [17] Zhang Ying, Wang Jianhui, Chen Bo. Detecting False Data Injection Attacks in Smart Grids: A Semi-Supervised Deep Learning Approach[J]. IEEE Transactions on Smart Grid, 2021, 12(1):623-634.
    [35] [18] Zimmerman Raydaniel, Murillo-Sánchez Carlosedmundo, Thomas Robertjohn, et al. MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education[J]. IEEE Transactions on Power Systems, 2011, 26(1):12-19.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:394
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:September 13,2022
  • Revised:October 24,2022
  • Adopted:October 26,2022
Article QR Code

Address:No. 219, Ningliu Road, Nanjing, Jiangsu Province

Postcode:210044

Phone:025-58731025