Design and experimental research of surface temperature sensor based on CFD
CSTR:
Author:
Affiliation:

1.Nanjing University of Information Science &2.Technology

Fund Project:

National Natural Science Foundation of China (41875035); Jiangsu Province Industry-University-Research Cooperation Project (BY2022544); Jiangsu Postgraduate Research and Practice Innovation Program Project (SJCX22_0334); Jiangsu Province College Students Innovation and Entrepreneurship Training Program Project (202210300011Z)

  • Article
  • | |
  • Metrics
  • |
  • Reference [27]
  • | |
  • Cited by
  • | |
  • Comments
    Abstract:

    The ground temperature changes at a rate of 0.1 K every 10 years, however, due to the influence of solar radiation, when measured in practice, conventional radiation shields sensor will produce a solar radiation error of about 1 K. In order to improve the accuracy of surface temperature measurement and reduced working energy consumption, this paper designs a temperature sensor based on the diffusion of radiant heat from a piezoelectric ceramic vibration acceleration sensor probe. Firstly, the Computational Fluid Dynamics (CFD) method is used to calculate the radiation error of the temperature sensor under multi physics factors, and then the data is fitted and analyzed using the neural network algorithm, and finally the field experiment platform is built to place the temperature sensor in the real environment to verify the feasibility of the scheme. The experimental results show that the absolute error and root mean square error of the correction value and reference value of the surface temperature sensor are 0.041 K and 0.055 K, respectively, which also verifies the superiority of the correction effect of the neural network algorithm.

    Reference
    [1] Stocker T F, Qin D, Plattner G K, et al. IPCC, WG1, Climate change 2013: The physical science basis, Working working group 1 contribution to the fifth assessment report of the intergovernmental panel on climate change, eds[R]. U K: Cambridge University Press, 2013: 1308.
    [2] 方修琦, 余卫红. 物候对全球变暖响应的研究综述[J]. 地球科学进展, 2002(05): 714-719.
    [3] FANG Xiuqi, YU Weihong. Progress in the studies on the phenological responding to global warming[J]. Advance In Earth Sciences, 2002.(05): 714-719.
    [4] [3]严家德, 王成刚, 金莲姬, 等. 百叶箱和通风防辐射罩气温观测系统的数据对比与订正[J]. 气候与环境研究. 2015(05): 533-543.
    [5] YAN Jiade, WANG Chenggang, JIN Lianji, et al. A comparative and modification study of louvred and aspirated shield temperature systems[J]. Climatic and Environmental Research. 2015(05): 533-543.
    [6] [4]Lacombe M, Bousri D, Leroy M, et al. WMO Field Intercomparison of Thermometer Screens/Shields and Humidity Measuring Instruments[R], Algeria, 2011.
    [7] [5]Erell E, Leal V, Maldonado E. Measurement of air temperature in the presence of a large radiant flux: an assessment of passively ventilated thermometer screens[J]. Bound-Lay Meteorol, 2005, 114(1): 205-231.
    [8] [6]Haines A, Saunders M. Majority view of climate scientists is that global warming is indeed happening[J]. Bmj Clinical Research, 1998 316(7143): 1530.
    [9] [7]冯琪, 刘清惓, 杨杰, 等. 强制通风温度传感器计算流体动力学设计与分析[J]. 仪表技术与传感器, 2017(11): 17-20+29.
    [10] FENG Qi, LIU Qingquan, YANG Jie, et al. Computational fluid dynamics design and analysis of forced ventilation temperature sensor[J]. Instrument Technique and Sensor, 2017(11): 17-20+29.
    [11] [8]Thomas C K, Smoot A R. An Effective, Economic, Aspirated Radiation Shield for Air Temperature Observations and Its Spatial Gradients[J]. Journal of Atmospheric&Oceanic Technology, 2013, 30(3): 526-537.
    [12] [9]隋洪岗. PT100温度传感器在温度数据实时监测系统中的应用[J]. 电脑开发与应用, 2011, 24(04): 64-65.
    [13] SUI Honggang. Application of PT100 Temperature Sensor to Real-time Temperature M-onitoring System[J]. Computer Development & Applications, 2011, 24(04): 64-65.
    [14] [10]赵永强, 朱博文, 刘智, 等. 三螺杆泵的流固耦合特性分析[J]. 液压与气动, 2020(06): 70-77.
    [15] ZHAO Yongqiang, ZHU Bowen, LIU Zhi, et al. Analysis of fluid solid coupling char-acteristics of three screw pump[J]. Chinese Hydraulics & Pneumatics, 2020(06): 70-77.
    [16] [11]刘清惓, 杨杰, 杨荣康, 等. 双加热湿度传感器的CFD分析与加热策略设计[J]. 传感技术学报, 2012, 25(08): 1039-1044.
    [17] LIU Qingquan, YANG Jie, YANG Rongkang, et al. CFD Analysis and heating strategy design of heated twin humidity sensor[J]. Chinese Journal of Sensors and Actuators, 2012, 25(8):1039-1044.
    [18] [12]王福军. 计算流体动力学分析-CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 75-82.
    [19] WANG Fujun, Computational fluid dynamics analysis-CFD software principles and app-lications[M]. BeiJing: Tsinghua University Press, 2004: 75-82.
    [20] [13]Wu B, Han S, Xiao J. et al. Error compensation bast on BP neural network for airborne laser ranging[J]. International Journal for Light and Electron Optics, 2016, 127(8): 4083-4088.
    [21] [14]马奔, 薛永基, 顾艳红. 修正的BP神经网络森林火灾成灾面积预测研究[J]. 资源开发与市场, 2014, 30(12): 1441-1443.
    [22] MA Ben, XUE Yongji, GU Yanhong, et al. Study on prediction of forest fire disaster area with modified BP neural network[J]. Resource Development & Market, 2014, 30(12): 1441-1443.
    [23] [15]耿增显, 陈锦涛, 赵嶷飞, 等. 基于BP网络的小型无人机航迹预测[J]. 西华大学学报(自然科学版), 2022, 41(01): 30-35.
    [24] GENG Zengxian, CHEN Jintao, ZHAO Yifei, Track prediction of small UAV based BP network[J]. Journal of Xihua University(Natural Science Edition), 2022, 41(01): 30-35.
    [25] [16]Li Z, Liu C, Xu Y, et al. A novel analog power supply for gain control of the Multi-PixelPhoton Counter (MPPC)[J]. Nuclear Inst. and Methods in Physics Research, A, 2017, 850: 35-41.
    [26] [17]孙星. 基准探空温度传感器设计[D]. 南京信息工程大学, 2019.
    [27] SUN Xing. Reference sounding temperature sensor design[D]. Nanjing University of In-formation Science & Technology, 2019.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:208
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:May 01,2022
  • Revised:August 17,2022
  • Adopted:August 18,2022
Article QR Code

Address:No. 219, Ningliu Road, Nanjing, Jiangsu Province

Postcode:210044

Phone:025-58731025