Research on 4PL Routing Problem Considering Customer Risk Preference
CSTR:
Author:
Affiliation:

1.School of Economics and Management,Yanshan University,Qinhuangdao;2.College of Information Science and Engineering,Northeastern University

  • Article
  • | |
  • Metrics
  • |
  • Reference [24]
  • | |
  • Cited by
  • | |
  • Comments
    Abstract:

    Previous studies on the fourth party logistics (4PL) routing problem have given little consideration to the risk preference of customer. Considering the customer"s risk preference, the value function in prospect theory is used to measure the customer"s risk attitude towards distribution cost and delivery period, and establish a mathematical model to maximize the utility of customer psychology evaluation. According to the characteristics of logistics network path optimization, an adaptive genetic algorithm embedded in Dijkstra algorithm is designed to solve the problem. Several numerical examples with different scales are designed, and the feasibility and effectiveness of the model and algorithm are illustrated on the basis of the simulation experiments. This paper provides a new decision-making model and optimization method for solving the fourth party logistics path optimization problem from the perspective of the influence of behavior on decision-making results.

    Reference
    [1] Li J, Liu Y Q, Zhang Y, Xu S D. Algorithms for routing optimization in multipoint to multipoint 4PL system[J]. Discrete Dynamics in Nature and Society, 2015, 1-7.
    [2] Qiu Y, Ni M, Wang L. Production routing problems with reverse logistics and remanufacturing[J]. Transportation Research Part E Logistics Transportation Review, 2018, 111: 87-100.
    [3] Bendoly E, Donohue K, Schultz K L. Behavior in operations management: Assessing recent findings and revisiting old assumptions[J]. Journal of Operations Management, 2006, 24(6): 737-752.
    [4] Croson R, Schultz K, Siemsen E, et al. Behavioral operations: The state of the field[J]. Journal of Operations Management, 2013, 31(1-2): 1-5.
    [5] 任亮,黄敏,王兴伟. 考虑客户拖期厌恶行为的4PL路径优化问题[J]. 计算机集成制造系统,2016,22(4):1148-1155.
    [6] Huang M, Cui Y, Yang S X, Wang X W. Fourth party logistics routing problem with fuzzy duration time[J]. Int. J. Production Economics, 2013, 145: 107-116.
    [7] Fuqiang Lu, Wenjing Feng, Mengying Gao, Hualing Bi, Suxin Wang, The Fourth-Party Logistics Routing Problem Using Ant Colony System-Improved Grey Wolf Optimization, Journal of Advanced Transportation, 2020, 8831746: 1-15.
    [8] 崔妍,黄敏,杨学成. 基于优先权编码机制带有随机需求的4PL路径问题[J]. 工业工程, 2017(02): 36-41.
    [9] 崔妍,马跃,王兴伟,黄敏,考虑3PL承载能力时变的4PL协同路径定制问题[J]. 控制与决策,2022,37(03):763-768
    [10] 李锐,孙福明,佟玉军,第四方物流多到多弹复性网络设计[J],计算机工程,2017, 43(4): 228-233
    [11] 陈劲,崔妍,宁磊,黄敏,提前/拖期第四方物流路径问题模型与算法[J],控制工程,2017, 24(1): 22-27
    [12] Hong W, Xu Z L,Liu W, Wu L H, Pu X J. Queuing theory-based optimization research on the multi-objective transportation problem of fourth party logistics[J]. Proceedings of The Institution of Mechanical Engineers Part B-journal of Engineering Manufacture, 2021, 235(8): 1327-1337.
    [13] 毕华玲,刘萌英,杜子超,卢福强,黄敏,多周期第四方物流集成反馈网络设计的模型与算法[J]. 工业技术经济,2021,40(02):73-81.
    [14] 董丽薇,黄敏,匡韩斌,王兴伟,一种集成最后一公里的四方物流网络设计问题启发式算法[J/OL]. 控制与决策:1-8.
    [15] 唐怀洞,卢福强,王雷震,王素欣,毕华玲,软时间窗多式联运4PL路径问题的改进乌鸦算法[J]. 计算机工程与应用,2022,58(03):274-281.
    [16] 卢福强,刘婷,杜子超,毕华玲,黄敏,模糊粒子群优化算法的第四方物流运输时间优化[J]. 智能系统学报,2021,16(03):474-483.
    [17] 李娜. 考虑客户时间心理偏好的4PL路径优化问题研究[D]. 沈阳:东北大学,2014.
    [18] Yue D X, Huang M, Yin M Q. PSO algorithm for the fourth party logistics network design considering multi-customer behavior under stochastic demand[C]. 29th Chinese Control And Decision Conference(CCDC), 2017, 5, Chongqing.
    [19] Huang M, Dong L W, Kuang H B, Jiang Z Z, Lee L H, Wang X W. Supply chain network design considering customer psychological behavior-a 4PL perspective[J]. Computers Industrial Engineering, 2021, 159(107484): 1-14.
    [20] 薄桂华,黄敏,考虑拖期风险的第四方物流路径优化问题模型与求解[J],复杂系统与复杂性科学,2018, 15(3):66-74
    [21] 薄桂华,黄敏,柳欣. 考虑提前/拖期风险的第四方物流路径优化问题研究[J]. 南京信息工程大学学报(自然科学版),2021,13(05):589-595.
    [22] 胡桂红,基于累积前景理论的第四方物流路径优化模型及其求解算法[J],电子科技大学学报(社科版),2019, 21(2): 107-112
    [23] Tversky K A. Prospect Theory: An analysis of decision under risk[J]. Econometrica, 1979, 47(2): 263-292.
    [24] Hualing Bi, Fuqian Lu, Shupeng Duan, Min Huang, Jinwen Zhu, Mengying Liu, Two-Level Principal-Agent Model for Schedule Risk Control of IT Outsourcing Project Based on Genetic Algorithm, Engineering Applications of Artificial Intelligence, 2020, 91(103584): 1-28.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:452
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:April 08,2022
  • Revised:May 05,2022
  • Adopted:May 09,2022
Article QR Code

Address:No. 219, Ningliu Road, Nanjing, Jiangsu Province

Postcode:210044

Phone:025-58731025