GPU-based accelerated processing of atmospheric hyperspectral remote sensing data
Author:
Clc Number:

TP751.1

  • Article
  • | |
  • Metrics
  • |
  • Reference [9]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The demand for higher temporal and spatial resolution of atmospheric detection has brought about rapid increase of atmospheric hyperspectral remote sensing data;however,traditional methods have low efficiency for hyperspectral data processing.Here,we summarize the application examples of using GPU to accelerate the processing of hyperspectral remote sensing data,among which we focus on the parallel computing of the Fourier analysis of hyperspectral data based on the CPU-GPU heterogeneous mode.Then the CPU-GPU heterogeneous mode based parallel computing is implemented and then compared with traditional CPU-based computing.The results show that the data processing speed is increased by about 90 times while ensuring the data accuracy as well,thus verify the effectiveness of GPU to accelerate the processing of atmospheric remote sensing hyperspectral data.

    Reference
    [1] 华建文,毛建华."风云四号"气象卫星大气垂直探测仪[J].科学,2018,70(1):24-29 HUA Jianwen,MAO Jianhua.Geostationary interferometric-type infrared sounder (GIRS) on Fengyun No.4 meteorological satellite[J].Science,2018,70(1):24-29
    [2] 金媛.面向CPU、GPU及其异构形式的混合模拟算法的高性能并行优化[D].南昌:南昌大学,2020 JIN Yuan.High performance parallel optimization of hybrid simulation algorithms for CPU,GPU and its heterogeneous forms[D].Nanchang:Nanchang University,2020
    [3] 王茂芝,郭科,徐文皙.基于集群和GPU的高光谱遥感影像并行处理[J].红外与激光工程,2013,42(11):3070-3075 WANG Maozhi,GUO Ke,XU Wenxi.Parallel processing of hyperspectral remote sensing images based on cluster and GPU[J].Infrared and Laser Engineering,2013,42(11):3070-3075
    [4] 汤媛媛,周海芳,方民权,等.基于CPU/GPU异构模式的高光谱遥感影像数据处理研究与实现[J].计算机科学,2016,43(02):47-50,77 TANG Yuanyuan,ZHOU Haifang,FANG Minquan,et al.Research and implementation of hyperspectral remote sensing image data processing based on CPU/GPU heterogeneous model[J].Computer Science,2016,43(2):47-50,77
    [5] Paz A,Plaza A.Cluster versus GPU implementation of an orthogonal target detection algorithm for remotely sensed hyperspectral images[C]//2010 IEEE International Conference on Cluster Computing,2010:227-234
    [6] 刘灿.遥感图像几何校正GPU阵列并行算法研究[D].成都:电子科技大学,2019 LIU Can.Research on GPU array parallel algorithm for geometric correction of remote sensing images[D].Chengdu:University of Electronic Science and Technology of China,2019
    [7] 党源源,王昕.CPU-GPU异构系统在光学遥感影像处理中的应用[J].红外与激光工程,2020,49(增刊1):177-185 DANG Yuanyuan,WANG Xin.Application of CPU-GPU heterogeneous system in optical remote sensing image processing[J].Infrared and Laser Engineering,2020,49(sup1):177-185
    [8] 张明华,邹亚晴,宋巍,等.GGCN:基于GPU的高光谱图像分类算法[J].激光与光电子学进展,2020,57(20):231-237 ZHANG Minghua,ZOU Yaqing,SONG Wei,et al.GGCN:GPU-based hyperspectral image classification algorithm[J].Laser&Optoelectronics Progress,2020,57(20):231-237
    [9] 龚彤艳,张广婷,贾海鹏,等.一种偶数基Cooley-Tukey FFT高性能实现方法[J].计算机科学,2020,47(1):31-39 GONG Tongyan,ZHANG Guangting,JIA Haipeng,et al.A high performance implementation method of Cooley-Tukey FFT with even base[J].Computer Science,2020,47(1):31-39.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHANG Yuan, ZHANG Dawei, CHEN Ren, HUA Jianwen. GPU-based accelerated processing of atmospheric hyperspectral remote sensing data[J]. Journal of Nanjing University of Information Science & Technology,2022,14(2):247-252

Copy
Share
Article Metrics
  • Abstract:634
  • PDF: 1425
  • HTML: 141
  • Cited by: 0
History
  • Received:May 22,2021
  • Online: April 27,2022
Article QR Code

Address:No. 219, Ningliu Road, Nanjing, Jiangsu Province

Postcode:210044

Phone:025-58731025