Mobile robot path planning based on improved ant colony algorithm
Author:
Clc Number:

TP242.6

  • Article
  • | |
  • Metrics
  • |
  • Reference [14]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Ant colony algorithm has slow convergence rate,low efficiency and often gets local optimal solution.We propose an adaptive way to change the amount of pheromones,which can speed up the convergence rate.We also improve the heuristic function to increase the purpose of ant colony search,as well as reduce the probability of falling into local optimal solution.Simulations are carried out to verify the effectiveness of the proposed algorithm,and the results show that the global optimal search ability and convergence rate are greatly improved.

    Reference
    [1] 陈志,韩兴国.改进蚁群算法在移动机器人路径规划上的应用[J].计算机工程与设计,2020,41(8):2388-2395 CHEN Zhi,HAN Xingguo.Application of improved ant colony algorithm in mobile robot path planning[J].Computer Engineering and Design,2020,41(8):2388-2395
    [2] 刘泽,金世俊,王庆.基于改进蚁群算法的移动机器人二维路径规划[J].传感器与微系统,2020,39(10):149-152 LIU Ze,JIN Shijun,WANG Qing.2D path planning of mobile robots based on improved ant colony algorithm[J].Transducer and Microsystem Technologies,2020,39(10):149-152
    [3] 曹新亮,王智文,冯晶,等.基于改进蚁群算法的机器人全局路径规划研究[J].计算机工程与科学,2020,42(3):564-570 CAO Xinliang,WANG Zhiwen,FENG Jing,et al.Global path planning of robots based on improved ant colony algorithm[J].Computer Engineering and Science,2020,42(3):564-570
    [4] 李燕,钟磊.基于分子生物技术的DNA计算系统[J].淮海工学院学报(自然科学版),2014,23(4):9-13 LI Yan,ZHONG Lei.DNA computing system based on molecular biology technology[J].Journal of Huaihai Institute of Technology (Natural Science Edition),2014,23(4):9-13
    [5] 洪越,殷利平.基于遗传算法的非高斯系统随机分布控制[J].南京信息工程大学学报(自然科学版),2020,12(4):504-509 HONG Yue,YIN Liping.Genetic algorithm-based stochastic distribution control for non-Gaussian systems[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2020,12(4):504-509
    [6] Colorni A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies[C]//Proceedings of ECAL91-European Conference on Artificial Life,1991:124-142
    [7] 官娟,刘国华,刘天祺,等.基于MIMIC算法和RPCA的混合蚁群优化算法[J].南京信息工程大学学报(自然科学版),2020,12(5):569-576 GUAN Juan,LIU Guohua,LIU Tianqi,et al.A hybrid ant colony optimization algorithm based on MIMIC algorithm and RPCA[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2020,12(5):569-576
    [8] Stützle T,Hoos H H.MAX-MIN ant system[J].Future Generation Computer Systems,2000,16(8):889-914
    [9] 张原艺,章政,王泉.基于改进多步长蚁群算法的机器人路径规划[J].计算机工程与设计,2018,39(12):3829-3834,3866 ZHANG Yuanyi,ZHANG Zheng,WANG Quan.Robot path planning based on improved multi-step ant colony algorithm[J].Computer Engineering and Design,2018,39(12):3829-3834,3866
    [10] 占伟,屈军锁,芦鑫,等.基于改进蚁群算法的移动机器人全局路径规划[J].现代电子技术,2018,41(24):170-173 ZHAN Wei,QU Junsuo,LU Xin,et al.Global path planning based on improved ant colony algorithm for mobile robot[J].Modern Electronics Technique,2018,41(24):170-173
    [11] 陈劲峰,黄卫华,王肖,等.基于改进蚁群算法的移动机器人路径规划[J].高技术通讯,2020,30(3):291-297 CHEN Jinfeng,HUANG Weihua,WANG Xiao,et al.Research on path planning based on an improved ant colony algorithm for mobile robot[J].Chinese High Technology Letters,2020,30(3):291-297
    [12] 杜玉红,张岩,赵焕峰.基于参数优化蚁群算法的机器人路径规划研究[J].现代制造工程,2020(9):7-14 DU Yuhong,ZHANG Yan,ZHAO Huanfeng.Research on robot path planning based on parameters optimized ant colony optimization[J].Modern Manufacturing Engineering,2020(9):7-14
    [13] 肖艳秋,焦建强,乔东平,等.蚁群算法的基本原理及应用综述[J].轻工科技,2018,34(3):69-72 XIAO Yanqiu,JIAO Jianqiang,QIAO Dongping,et al.Summary of the basic principles and applications of ant colony algorithm[J].Light Industry Science and Technology,2018,34(3):69-72
    [14] 刘泽,金世俊,王庆.基于改进蚁群算法的移动机器人二维路径规划[J].传感器与微系统,2020,39(10):149-152 LIU Ze,JIN Shijun,WANG Qing.2D path planning of mobile robots based on improved ant colony algorithm[J].Transducer and Microsystem Technologies,2020,39(10):149-152
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LI Yan, JI Jiannan, SHEN Jiali, SU Rui. Mobile robot path planning based on improved ant colony algorithm[J]. Journal of Nanjing University of Information Science & Technology,2021,13(3):298-303

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 25,2020
  • Online: June 25,2021
Article QR Code

Address:No. 219, Ningliu Road, Nanjing, Jiangsu Province

Postcode:210044

Phone:025-58731025