Analyze the problems and suggestions of expert score bias based on inverse reinforcement model and mathematical statistics methods
Author:
Clc Number:

F204;G311

  • Article
  • | |
  • Metrics
  • |
  • Reference [26]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    During the 12th Five Year Plan period,National High Technology Research and Development Program of China (863 Program),as one of the main drivers of science and technology development,has provided important support for improving China's scientific and technological strength and innovation ability.Acceptance experts play a key role in assessing the level of subject completion and measuring the value of scientific research achievements.The reliability of their scores is directly related to the rationality of 863 program implementation evaluation.Therefore,taking the subject acceptance in a certain field as an example,this paper combines an inverse reinforcement-based model and mathematical statistics methods to systematically analyze the rating bias of technical acceptance experts.Finally,these experts are divided into 8 categories according to their rating performances and corresponding suggestions are given respectively.The results show that the scores are reasonable as a whole,and most experts can give reliable scores;although there are some differences in the rating scales,they are basically in an acceptable range.This study will provide a reference for the review work related to national science and technology plan,and other scientific research management activities,in order to reasonably carry out expert evaluation,refine and standardize review behaviors,improve field expert databases,and select acceptance expert candidates.

    Reference
    [1] 中国科学技术部国家遥感中心.羲和系统信号获取说明[EB/OL].(2014-06-10)[2020-03-02].http://csi.gov.cn/nrscc/kjjhgl/gj863jh/863tzgg/201406/t20140610_32726.html The National Remote Sensing Center of China(NRSCC).Description of Xihe system signal acquisition[EB/OL].(2014-06-10)[2020-03-02].http://csi.gov.cn/nrscc/kjjhgl/gj863jh/863tzgg/201406/t20140610_32726.html
    [2] 中国科学技术部.中国反射面天线技术引领国际大科学工程核心设备研制[EB/OL].(2018-10-26)[2020-03-02].http://www.most.gov.cn/gnwkjdt/201810/t20181026_142436.htm Ministry of Science and Technology of the People's Republic of China.China's reflector antenna technology leads the development of core equipment for international mega-science project[EB/OL].(2018-10-26)[2020-03-02].http://www.most.gov.cn/gnwkjdt/201810/t20181026_142436.htm
    [3] 彭龙.科研活动的实力评价及评价的偏差问题[J].科学管理研究,1993,11(3):42-45 PENG Long.The deviation of strength evaluation and evaluation of scientific research activities[J].Scientific Management Research,1993,11(3):42-45
    [4] 谢焕瑛,张健.国家重点实验室评估专家的若干问题研究[J].研究与发展管理,2006,18(4):108-111 XIE Huanying,ZHANG Jian.Research on the problems of the reviewers of the state key laboratory[J].R & D Management,2006,18(4):108-111
    [5] 谢焕瑛.国家重点实验室评估专家评分偏差效应分析[J].研究与发展管理,2006,18(6):134-138 XIE Huanying.Analysis on the warp of the review of the state key laboratory[J].R & D Management,2006,18(6):134-138
    [6] 张健,谢焕瑛.国家重点实验室评估方法的若干问题研究[J].管理学报,2008,5(2):279-281 ZHANG Jian,XIE Huanying.Research on several problems on the evaluation of the state key laboratory[J].Chinese Journal of Management,2008,5(2):279-281
    [7] 杨晓秋.关于国家重点实验室评估的思考[J].实验室研究与探索,2015,34(9):141-144,148 YANG Xiaoqiu.Thoughts on the evaluation of the state key laboratory[J].Research and Exploration in Laboratory,2015,34(9):141-144,148
    [8] 孙晓敏,张厚粲.国家公务员结构化面试中评委偏差的IRT分析[J].心理学报,2006,38(4):614-625 SUN Xiaomin,ZHANG Houcan.An IRT analysis of rater bias in structured interview of national civilian candidates[J].Acta Psychologica Sinica,2006,38(4):614-625
    [9] 苏永华,柴雪,丁玉洋.国家公务员录用面试初步研究[J].应用心理学,1998,4(1):15-20 SU Xuehua,CHAI Xue,DING Yuyang.Preliminary research on interview of national civil servant recruitment[J].Chinese Journal of Applied Psychology,1998,4(1):15-20
    [10] 陈宛玉,戴海琦.教育教学能力测试的GT和多面Rasch模型分析[J].考试研究,2013,9(3):70-78 CHEN Wanyu,DAI Haiqi.Analysis of GT and multidimensional Rasch model for educational and teaching capability testing[J].Examination Research,2013,9(3):70-78
    [11] 孙晓敏,薛刚.多面Rasch模型在结构化面试中的应用[J].心理学报,2008,40(9):1030-1039 SUN Xiaomin,XUE Gang.A many-faceted Rasch model analysis of structured interview[J].Acta Psychologica Sinica,2008,40(9):1030-1039
    [12] 周燕,曾用强.机助英语听说考试计算机自动评分的多层面Rasch模型分析[J].外语测试与教学,2016,6(1):22-31 ZHOU Yan,ZENG Yongqiang.Multi level Rasch model analysis of computer-aided English listening and speaking test[J].Foreign Language Testing & Teaching,2016,6(1):22-31
    [13] 王佶旻,李潇.基于Rasch模型的参数估计方法比较研究[J].中国考试,2017,14(9):11-21 WANG Jimin,LI Xiao.The comparison between the method of MLE,MLE/EM and BMES under the Rasch model[J].China Examinations,2017,14(9):11-21
    [14] Lauw H W,Lim E P,Wang K.Bias and controversy in evaluation systems[J].IEEE Transactions on Knowledge and Data Engineering,2008,20(11):1490-1504
    [15] Dai H B,Zhu F D,Lim E P,et al.Detecting anomalies in bipartite graphs with mutual dependency principles[C]//Proceedings of the Twelfth IEEE International Conference on Data Mining,2012:172-180
    [16] Xie H,Lui J C S.Incentive mechanism and rating system design for crowdsourcing systems:analysis,tradeoffs and inference[J].IEEE Transactions on Services Computing,2018,11(1):90-102
    [17] Zielinski K,Nielek R,Wierzbicki A,et al.Computing controversy:formal model and algorithms for detecting controversy on Wikipedia and in search queries[J].Information Processing & Management,2018,54(1):14-36
    [18] 吕书龙,梁飞豹,刘文丽.关于评委评分的评价模型[J].福州大学学报(自然科学报),2010,38(3):358-362 LÜ Shulong,LIANG Feibao,LIU Wenli.An evaluation model of rater score[J].Journal of Fuzhou University(Natural Science Edition),2010,38(3):358-362
    [19] 梁薇.基于投影寻踪模型的网评评委综合素质评价[J].统计与决策,2017,33(23):60-63 LIANG Wei.Evaluation of comprehensive quality of web evaluation judges based on projection pursuit model[J].Statistics and Decision,2017,33(23):60-63
    [20] Gao M,Chen L,Li B,et al.Projection-based link prediction in a bipartite network[J].Information Sciences,2017,376:158-171
    [21] Liu W,Wu S,Wu X,et al.Mixed probability inverse depth estimation based on probabilistic graph model[J].IEEE Access,2019,7:72591-72603
    [22] Soldi G,Meyer F,Braca P,et al.Self-tuning algorithms for multisensor-multitarget tracking using belief propagation[J].IEEE Transactions on Signal Processing,2019,67(15):3922-3937
    [23] Berkhin P.A survey on PageRank computing[J].Internet Mathematics,2005,2(1):73-120
    [24] Otsu N.A threshold selection method from gray-level histograms[J].IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66
    [25] 中共中央办公厅国务院办公厅印发《关于深化项目评审、人才评价、机构评估改革的意见》[EB/OL].(2018-07-03)[2020-03-02].http://www.gov.cn/zhengce/2018-07/03/content_5303251.htm
    [26] 教育部科技部印发《关于规范高等学校SCI论文相关指标使用树立正确评价导向的若干意见》的通知[EB/OL].(2020-02-18)[2020-03-02].http://www.gov.cn/zhengce/zhengceku/2020-03/03/content_5486229.htm
    Related
    Cited by
Get Citation

TIAN Linlin, SUN Weidong, ZHANG Chi, GUO Ming, WEI Nadu. Analyze the problems and suggestions of expert score bias based on inverse reinforcement model and mathematical statistics methods[J]. Journal of Nanjing University of Information Science & Technology,2020,12(5):577-590

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 28,2020
  • Online: October 29,2020
Article QR Code

Address:No. 219, Ningliu Road, Nanjing, Jiangsu Province

Postcode:210044

Phone:025-58731025