Speaker intention recognition based on S-LSTM model and slot-gate
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    The recognition of the speaker's intention has greatly promoted the development of natural language understanding.In previous studies,the bidirectional long short-term memory (Bi-LSTM) model has been mostly employed in natural language processing to extract the features of words and the relationships between them.However,Bi-LSTM cannot establish a well-enough relation between the information contained in a sentence and its individual vocabulary.Another previously proposed model,i.e.,the S-LSTM (Sentence-state LSTM) model,can establish a relation between sentence information and its individual words.This,in turn,facilitates the establishment of the relationship between intention detection and slot filling,for the purpose of proposing a joint model to better understand the semantics contained in the question-answer system.Therefore,in this paper,slot-gate mechanism is introduced to solve the waste of the latest iteration sentence state when S-LSTM is applied to the joint task of intention detection and slot filling.The experimental results based on ATIS and Snips datasets confirm that the proposed mechanism is superior to other state-of-the-art approaches.

    Reference
    Related
    Cited by
Get Citation

WANG Ziyue, SHAO Xi. Speaker intention recognition based on S-LSTM model and slot-gate[J]. Journal of Nanjing University of Information Science & Technology,2019,11(6):751-756

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 15,2019
  • Online: January 19,2020
Article QR Code

Address:No. 219, Ningliu Road, Nanjing, Jiangsu Province

Postcode:210044

Phone:025-58731025