A linearized compact difference scheme for nonlinear Schrödinger equation
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [19]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    We propose a linearized compact difference scheme for the nonlinear Schrödinger equation.The existence of the difference solution is proved by Brouwer fixed point theorem.It is proved by the discrete energy method and the method of mathematical induction that the new scheme is uniquely solvable and convergent with fourth-order in x-direction and second-order in t-direction.Numerical results verify the precision and numerical stability of the proposed scheme.

    Reference
    [1] Griffiths D J.Introduction to Quantum mechanics[M].Englewood Cliffs,NJ:Prentice-Hall,1995
    [2] Menyuk C R.Stability of solitons in birefringent optical fibers Ⅱ.Arbitrary amplitudes[J].J Opt Soc Am B,1998,5(2):392-402
    [3] Wadati M,Iizuka T,Hisakado M.A coupled nonlinear Schrödirnger equation and optical solitons[J].J Phys Soc Jpn,1992,61(7):2241-2245
    [4] Chang Q S,Jia E H,Sun W.Difference schemes for solving the generalized nonlinear Schrödinger equation[J].J Comput Phys,1999,148(2):397-415
    [5] Dai W.An unconditionally stable three-level explicit difference scheme for the Schrödinger equation with a variable coefficient[J].SIAM J Numer Anal,1992,29(1):174-181
    [6] Ivanauskas F,Radziunas M.On convergence and stability of the explicit difference method for solution of nonlinear Schrödinger equations[J].SIAM J Numer Anal,1999,36(5):1466-1481
    [7] Nash P L,Chen L Y.Efficient finite difference solutions to the time-dependent Schrödinger equation[J].J Comput Phys,1997,130(2):266-268
    [8] Sun Z Z,Wu X.The stability and convergence of a difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions[J].J Comput Phys,2006,214(1):209-223
    [9] Fei Z,Pérez-García V M,Vázquez L.Numerical simulation of nonlinear Schrödinger systems:A new conservative scheme[J].Appl Math Comput,1995,71(2/3):165-177
    [10] Karakashian O A,Akrivis G D,Dougalis V A.On optimal order error estimates for the nonlinear Schrödinger equation[J].SIAM J Numer Anal,1993,30(2):377-400
    [11] Bao W Z,Jaksch D.An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity[J].SIAM J Numer Anal,2003,41(4):1406-1426
    [12] Li B K,Fairweather G,Bialecki B.Discrete-time orthogonal spline collocation methods for Schrödinger equations in two space variables[J].SIAM J Numer Anal,1998,35(2):453-477
    [13] Robinson M P,Fairweather G.Orthogonal spline collocation methods for Schrödinger-type equations in one space variable[J].Numer Math,1994,68(3):355-376
    [14] Berikelashvili G,Gupta M M,Mirianashvili M.Convergence of fourth order compact difference schemes for three-dimensional convection-diffusion equations[J].SIAM J Numer Anal,2007,45(1):443-455
    [15] Gopaul A,Bhuruth M.Analysis of a fourth-order scheme for a three-dimensional convection-diffusion model problem[J].SIAM J Sci Comput,2006,28(6):2075-2094
    [16] Liao H L,Sun Z Z.Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations[J].Numerical Methods for Partial Differential Equations,2010,26(1):37-60
    [17] Liao H L,Sun Z Z,Shi H S.Error estimate of fourth-order compact scheme for linear Schrödinger equations[J].SIAM J Numer Anal,2010,47(6):4381-4401
    [18] Xie S S,Li G X,Yi S.Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schröinger equation[J].Comput Meths Appl Mech Engrg,2009,198(9/10/11/12):1052-1060
    [19] Wang T C,Guo B L.Unconditional convergence of two conservative compact difference schemes for nonlinear Schrödinger equation in one dimension[J].Scientia Sinica Mathematica,2011,41(3):207-233
    Cited by
Get Citation

WANG Tingchun. A linearized compact difference scheme for nonlinear Schrödinger equation[J]. Journal of Nanjing University of Information Science & Technology,2012,4(6):569-572

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 21,2012
Article QR Code

Address:No. 219, Ningliu Road, Nanjing, Jiangsu Province

Postcode:210044

Phone:025-58731025