2022, 14(3):331-340.DOI: 10.13878/j.cnki.jnuist.2022.03.009
摘要:为实现边缘端人体行为识别需满足低功耗、低延时的目标,本文设计了一种以卷积神经网络(CNN)为基础、基于可穿戴传感器的快速识别系统.首先通过传感器采集数据,制作人体行为识别数据集,在PC端预训练基于CNN的行为识别模型,在测试集达到93.61%的准确率.然后,通过数据定点化、卷积核复用、并行处理数据和流水线等方法实现硬件加速.最后在FPGA上部署识别模型,并将采集到的传感器数据输入到系统中,实现边缘端的人体行为识别.整个系统基于Ultra96-V2进行软硬件联合开发,实验结果表明,输入时钟为200 M的情况下,系统在FPGA上运行准确率达到91.80%的同时,识别速度高于CPU,功耗仅为CPU的1/10,能耗比相对于GPU提升了91%,达到了低功耗、低延时的设计要求.
2022, 14(5):566-578.DOI: 10.13878/j.cnki.jnuist.2022.05.008
摘要:深度学习的自动学习特征和精确的预测能力使其在地基云分类上获得成功,更复杂更优良的深度学习网络在地基云分类领域得到研究和应用.近两年来一些大规模地基云分类数据集被公布,但还没有文献对这些大数据集进行完整地介绍和使用.本文对深度学习地基云分类领域最新的研究进展进行了详细的概括,并介绍了最新发布的国际标准大规模数据集,最后对几种经典的卷积神经网络深度学习模型在地基云分类上的性能进行了评估,验证了卷积神经网络在地基云分类领域的适用性.
2017, 9(6):650-655.DOI: 10.13878/j.cnki.jnuist.2017.06.009
摘要:在去马赛克问题中,为了精确插值倾斜边缘并提高结果图像的整体质量,提出一种基于残余插值的卷积神经网络去马赛克算法.针对Bayer格式的颜色滤波阵列,插值绿色平面时,对于红蓝通道信息不全的问题,采用同通道邻近像素值近似代替,综合考虑3个通道的梯度,运用倾斜方向的边缘检测算子,将倾斜边缘分为不同方向的边缘分别插值.在插值完成后,利用深度卷积神经网络,进一步训练插值结果.在标准的IMAX数据集上,与目前流行的算法相比,本文算法视觉上更接近原图,具有更高的峰值信噪比和更短的运行时间.
地址:江苏省南京市宁六路219号 邮编:210044
联系电话:025-58731025 E-mail:nxdxb@nuist.edu.cn
南京信息工程大学学报 ® 2025 版权所有 技术支持:北京勤云科技发展有限公司