2023, 15(3):367-378.DOI: 10.13878/j.cnki.jnuist.20220622004
摘要:降水云系的发展过程及其特征分析,是云降水物理学中的一个重要问题.本文选取一次云发展过程中的700 hPa云水含量(Cloud Water Content,CWC)和大气垂直方向上气流速度(Omega,OMG)的1 h值,以信息熵来度量CWC空间分布的混沌程度,辅以OMG的时间变化来判断云的发展,并提出了一种基于多尺度分解、Holt模型、自回归滑动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)和Lagrange Multiplier的组合预测方法.结果表明:1) CWC 熵具有非线性和非平稳性;2)在云的不同发展阶段,北方CWC熵序列的均值都小于南方,方差普遍大于南方;3) OMG 区域均值与CWC熵的小波低频重构的极值点在时间上有很好的对应关系,相近的极值点在南方中占50%,在北方中占83.3%,表明CWC熵可以在一定程度上反映云系的发展;4) CWC熵序列往往具有多种时间尺度特征,故进行多尺度分解之后再组合建模的Holt-ARIMA-Lagrange Multiplier模型比单一预测方法、单层分解的预测模型更优,准确率提高3%以上.
地址:江苏省南京市宁六路219号 邮编:210044
联系电话:025-58731025 E-mail:nxdxb@nuist.edu.cn
南京信息工程大学学报 ® 2025 版权所有 技术支持:北京勤云科技发展有限公司