2024, 16(2):261-269.DOI: 10.13878/j.cnki.jnuist.20220610001
摘要:利用法国布雷斯特(Brest)港BRST测站和英国塞文大桥监测系统GNSS双频观测数据,分别在静态和高动态环境下进行GPS-IR水位反演,探究传统GNSS监测系统进行水位反演的可行性与精度.结果表明:L1波段反演精度高于L2波段;在静态场景下,GPS-IR水位反演结果与验潮站数据相关系数大于0.98,在高动态场景下,桥梁GPS-IR水位反演精度稍低.利用经验模态分解(EMD)方法对算法进行改进,提高了在桥梁复杂环境下GPS-IR水位反演结果的精度,均方根误差(RMSE)相比经典方法降低约50%.本文方法提高了GPS-IR技术在不同水域环境下的适用性,在水位监测中具有很好的应用前景.
2021, 13(6):686-692.DOI: 10.13878/j.cnki.jnuist.2021.06.007
摘要:水位信息是研究水循环、气候和生态环境变化的重要参数, 近实时、高精度地监测其变化具有重要的意义.传统水位计测量成本高、范围小, 且是相对水位测量.全球导航卫星系统干涉反射测量(GNSS-IR)利用岸边架设的GNSS接收机所获取的信噪比(SNR)数据估计水位变化, 为水位测量提供了一种新的监测方法, 具有全天候、高精度和近实时等优点.本文利用长江上游巴东多系统GNSS观测站采集30 d的GPS、BDS以及GLONASS系统SNR数据, 反演了水位变化, 并和水位站进行比对, 结果表明GNSS-IR获得厘米级的水位反演精度, RMSE最低为6.43 cm.GPS和GLONASS系统L1频段以及BDS系统B1频段估计结果较好, GLONASS系统L2频段的反演精度低于其他频段.联合不同GNSS系统估计水位变化, 提高了GNSS-IR反演水位的时间分辨率.
地址:江苏省南京市宁六路219号 邮编:210044
联系电话:025-58731025 E-mail:nxdxb@nuist.edu.cn
南京信息工程大学学报 ® 2025 版权所有 技术支持:北京勤云科技发展有限公司