2019, 11(2):173-179.DOI: 10.13878/j.cnki.jnuist.2019.02.007
摘要:基于肌电信号的手部动作识别中,肌电信号测量位置的选择直接关系到动作识别的准确率.本文以使用最少的肌电传感器和获得较高的动作识别率为目标,提出一种基于ANOVA (方差分析)和BP神经网络的肌电信号测量位置优选方法.使用4个肌电传感器采集受试者做出指定动作时的肌电信号,提取肌电信号的时域特征,并按测量位置组合构成15个不同的样本进行BP神经网络的训练和测试.采用单因素ANOVA分析测量位置对动作识别结果影响的显著性,采用Tukey HSD将测量位置进行归类,并从动作识别率最高的子集中选择测量位置最少但识别准确率最高的测量位置组合作为最优的肌电信号测量位置.实验结果表明,测量位置对动作识别的结果具有显著的影响,随着测量位置数的增加,动作识别准确率呈上升趋势,最优的测量位置组合为P1+P3+P4,其动作识别准确率为94.6%.
地址:江苏省南京市宁六路219号 邮编:210044
联系电话:025-58731025 E-mail:nxdxb@nuist.edu.cn
南京信息工程大学学报 ® 2025 版权所有 技术支持:北京勤云科技发展有限公司