en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

朱佳威,男,硕士生,研究方向为环境材料.willweiwei1998@outlook.com

通讯作者:

仇鹏翔,男,博士,副教授,研究方向为大气环境化学、水环境污染机理与控制技术.pxqiu@nuist.edu.cn

中图分类号:TB332;O643.36

文献标识码:A

DOI:10.13878/j.cnki.jnuist.20230120001

参考文献 1
Baran W,Adamek E,Ziemiańska J,et al.Effects of the presence of sulfonamides in the environment and their influence on human health[J].Journal of Hazardous Materials,2011,196:1-15
参考文献 2
Wang L L,Jiang S F,Huang J,et al.Oxygen-doped biochar for the activation of ferrate for the highly efficient degradation of sulfadiazine with a distinct pathway[J].Journal of Environmental Chemical Engineering,2022,10(6):108537
参考文献 3
马瑞霄,周浩,张燕辉.RGO-ZnO光催化降解抗生素及还原Cr(Ⅵ)的研究[J].工业水处理,2021,41(3):53-56;MA Ruixiao,ZHOU Hao,ZHANG Yanhui.RGO-ZnO photocatalytic antibiotics degradation and Cr(Ⅵ)reduction[J].Industrial Water Treatment,2021,41(3):53-56
参考文献 4
蔡博华,邹伟,朱雪梅,等.PVA/SiO2@BiOBr纳米纤维的制备及其光催化性能[J].工业水处理,2022,42(6):140-145;CAI Bohua,ZOU Wei,ZHU Xuemei,et al.Fabrication of PVA/SiO2@BiOBr nanofibers and their photocatalytic characteristics[J].Industrial Water Treatment,2022,42(6):140-145
参考文献 5
Gao C M,Wei T,Zhang Y Y,et al.A photoresponsive rutile TiO2 heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution[J].Advanced Materials,2019,31(8):e1806596
参考文献 6
Chen Y,Deng X M,Wen J Y,et al.Piezo-promoted the generation of reactive oxygen species and the photodegradation of organic pollutants[J].Applied Catalysis B:Environmental,2019,258:118024
参考文献 7
Wang Z L.Piezopotential gated nanowire devices:piezotronics and piezo-phototronics[J].Nano Today,2010,5(6):540-552
参考文献 8
Yin X,Wu W,Zhang F S,et al.Synergetic effect of piezoelectricity and heterojunction on photocatalytic performance[J].Journal of Photochemistry and Photobiology A:Chemistry,2020,400:112661
参考文献 9
Tang Q,Wu J,Chen X Z,et al.Tuning oxygen vacancies in Bi4Ti3O12 nanosheets to boost piezo-photocatalytic activity[J].Nano Energy,2023,108:108202
参考文献 10
Gao H C,Zhang Y G,Xia H Y,et al.In situ generation of H2O2 over Ce-doped BaTiO3 catalysts for enhanced piezo-photocatalytic degradation of pollutants in aqueous solution[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,663:131030
参考文献 11
Chen P,Zhang Q X,Zheng X S,et al.Phosphate-modified m-Bi2O4 enhances the absorption and photocatalytic activities of sulfonamide:mechanism,reactive species,and reactive sites[J].Journal of Hazardous Materials,2020,384:121443
参考文献 12
Liu M M,Liu G,Liu X M,et al.One-pot synthesis of m-Bi2O4/Bi2O4-x/BiOCl with enhanced photocatalytic activity for BPA and CIP under visible-light[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,643:128772
参考文献 13
Cheng D,Teng M Q,Chen Y F,et al.In-situ construction of high-efficiency phase-transition induced m-Bi2O4/Bi4O7 surface heterojunction photocatalysts and mechanism investigation[J].Journal of Physics and Chemistry of Solids,2021,152:109947
参考文献 14
Lyu Y,Xu Z L,Nakane K,et al.A nanocrystalline oxygen-deficient bismuth oxide as an efficient adsorbent for effective visible-light-driven photocatalytic performance toward organic pollutant degradation[J].Journal of Colloid and Interface Science,2018,531:463-472
参考文献 15
Wang W J,Chen X Q,Liu G,et al.Monoclinic dibismuth tetraoxide:a new visible-light-driven photocatalyst for environmental remediation[J].Applied Catalysis B:Environmental,2015,176/177:444-453
参考文献 16
Zhou X F,Sun Q W,Zhai D,et al.Excellent catalytic performance of molten-salt-synthesized Bi0.5Na0.5TiO3 nanorods by the piezo-phototronic coupling effect[J].Nano Energy,2021,84:105936
参考文献 17
Yang Y,Hoffmann M R.Synthesis and stabilization of blue-black TiO2 nanotube arrays for electrochemical oxidant generation and wastewater treatment[J].Environmental Science & Technology,2016,50(21):11888-11894
参考文献 18
Lu S S,Liu F L,Qiu P X,et al.Photothermal-assisted photocatalytic degradation with ultrahigh solar utilization:towards practical application[J].Chemical Engineering Journal,2020,379:122382
参考文献 19
Wang Y J,Bai X J,Pan C S,et al.Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4[J].Journal of Materials Chemistry,2012,22(23):11568-11573
参考文献 20
Subramanian V,Wolf E E,Kamat P V.Catalysis with TiO2/gold nanocomposites:effect of metal particle size on the Fermi level equilibration[J].Journal of the American Chemical Society,2004,126(15):4943-4950
参考文献 21
Zhang M,Bai X J,Liu D,et al.Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position[J].Applied Catalysis B:Environmental,2015,164:77-81
参考文献 22
Li X,Wu Q,Hussain M,et al.Sodium alkoxide-mediated g-C3N4 immobilized on a composite nanofibrous membrane for preferable photocatalytic activity[J].RSC Advances,2022,12(24):15378-15384
参考文献 23
Wang Y B,Jiang Y,Zhao Y X,et al.Design strategies of perovskite nanofibers electrocatalysts for water splitting:a mini review[J].Chemical Engineering Journal,2023,451:138710
参考文献 24
Xie K F,Xu S Y,Xu K,et al.BiOCl heterojunction photocatalyst:construction,photocatalytic performance,and applications[J].Chemosphere,2023,317:137823
参考文献 25
Lyu L,Yu G F,Zhang L L,et al.4-phenoxyphenol-functionalized reduced graphene oxide nanosheets:a metal-free Fenton-like catalyst for pollutant destruction[J].Environmental Science & Technology,2018,52(2):747-756
参考文献 26
Xia D H,Shen Z R,Huang G C,et al.Red phosphorus:an earth-abundant elemental photocatalyst for green bacterial inactivation under visible light[J].Environmental Science & Technology,2015,49(10):6264-6273
参考文献 27
Xia D H,Lo I M C.Synthesis of magnetically separable Bi2O4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation[J].Water Research,2016,100:393-404
参考文献 28
Feng Y W,Li H,Ling L L,et al.Enhanced photocatalytic degradation performance by fluid-induced piezoelectric field[J].Environmental Science & Technology,2018,52(14):7842-7848
目录contents

    摘要

    采用简单的水热法制备m-Bi2O4,并利用XRD、XPS、SEM、TEM、UV-vis DRS、PFM等表征手段对样品结构、形貌、表面价态以及压电光催化性能进行分析.以磺胺甲基嘧啶(SM)为模拟污染物,测试了材料的压电光催化活性.结果表明,与BaTiO3和BiOCl相比,m-Bi2O4表现出了较高的催化性能.在压电光协同作用60 min后,对SM的降解效率高达96.46%.通过改变光的波长条件,证实m-Bi2O4在光能减弱条件下仍具有较高的催化活性.此外,通过活性自由基捕获实验证实反应体系中产生了高氧化活性的超氧自由基以及少量羟基自由基和单线态氧,并提出了一种可能的压电光催化机理.

    Abstract

    In this paper,we prepare m-Bi2O4 via a simple hydrothermal method,and analyze its structure,morphology,surface valence and piezoelectric photocatalytic performance using characterization methods such as XRD,XPS,SEM,TEM,UV-vis DRS and PFM.Furthermore,we test the piezoelectric photocatalytic activity of the material using sulfamethazine (SM) as a simulated pollutant.The results show that m-Bi2O4 outperforms BaTiO3 and BiOCl in catalytic performance,indicated by its high SM degradation efficiency (96.46%) after 60 min of synergistic piezoelectric-light action,and m-Bi2O4 still holds high catalytic activity under weakening light energy.In addition,superoxide radicals with high oxidation activity and a small amount of hydroxyl radicals and singlet oxygen have been captured in the reaction system.We also propose a possible mechanism of piezoelectric photocatalysis.

  • 0 引言

  • 近年来,抗生素滥用造成的水污染问题引起了全世界的广泛关注.磺胺甲基嘧啶(SM)是养殖和畜牧用量最大的抗生素[1-2].大部分磺胺类抗生素在动物体内不能被完全吸收,未吸收的部分通过排泄的方式直接进入生态系统,对生态系统造成潜在威胁.

  • 半导体光催化法因绿色环保、低能耗、高稳定性等优点已被广泛应用于抗生素等难降解有机物的去除[3-4].但在光催化过程中,光生电子空穴的分离效率低,在库仑力作用下很容易在体相或表面复合,只有很少一部分载流子能够摆脱库仑力的作用,迁移至半导体颗粒表面参与光催化反应[5].因此,有效提高电子空穴对的空间分离是光催化技术需要解决的关键问题之一[6].压电光催化作为一种提高光生载流子分离的新型方法引起了广泛关注.具有非中心对称性质的半导体材料在外界机械力作用下,材料内部会产生一个极化电场,利用电势差驱动光生载流子的转移和分离,进而提高材料光催化降解有机污染物效率[7-8].目前,有许多材料被广泛应用于压电光催化治理环境污染问题.例如:Tang等[9]调整Bi4Ti3O12(BIT)纳米片中的氧空位以提高材料压电光催化活性,与原始BIT纳米片相比,经过优化后的BIT材料表现出更优异的压电催化活性; Gao等[10]采用溶胶-凝胶/水热法制备的一系列Ce掺杂的钛酸钡,并将其应用于压电光催化作用下水中有机染料的去除,也表现出极高的降解效率.近年来,含Bi氧化物在光催化和能量转换领域引起了广泛关注,单斜相四氧化二铋(m-Bi2O4)更是研究热点之一.由于Bi3+的孤对轨道,m-Bi2O4的离域电子改善了其电子态,晶体中的Bi3+还优化了m-Bi2O4的能带结构[11-12].m-Bi2O4是一种在可见光下用于光催化应用的窄带半导体,不仅可以降解有机污染物还可以灭活细菌[13].目前,对于m-Bi2O4的研究主要集中于光催化领域,对其压电光协同催化性能的研究还处于空白阶段.

  • 本文利用水热法制备m-Bi2O4,研究其压电光催化协同降解水中磺胺甲基嘧啶(SM)的性能,并探究其在不同波长光照射下的催化性能.同时,还考察了反应体系中的活性物种,并探讨了可能的压电光催化机理.

  • 1 实验部分

  • 1.1 试剂和仪器

  • 二水合偏铋酸钠(NaBiO3·2H2O),AR,阿拉丁试剂(上海)有限公司; 钛酸钡(BaTiO3),AR,阿拉丁试剂(上海)有限公司; 氯氧化铋(BiOCl),AR,上海麦克林生化科技股份有限公司; 磺胺甲基嘧啶(SM),AR,阿拉丁试剂(上海)有限公司; 实验用水为超纯水.

  • 100 mL聚四氟乙烯内衬反应釜(西安莫吉娜仪器制造有限公司); 超声波清洗器(方需科技(上海)有限公司); VIS-7220型可见分光光度计(北京瑞利分析仪器有限公司); Cary Eclipse型荧光分光光度计(安捷伦科技有限公司); E2695高效液相色谱仪(Waters公司).

  • 1.2 样品的制备及表征

  • 1.2.1 四氧化二铋的制备

  • 以NaBiO3·2H2O为单一的前驱体材料,通过一步水热法制备m-Bi2O4.将1.12 g NaBiO3·2H2O粉末分散在40 mL超纯水中,快速搅拌使其分散均匀; 然后将分散均匀的混合物转移到100 mL聚四氟乙烯内衬的不锈钢高压反应釜中,在160℃下保持12 h; 水热反应后,将悬浊液以9 500 r/min离心,弃掉上清液留下固体,并用超纯水和乙醇清洗样品多次至pH为中性; 洗涤后的材料在55℃下烘干12 h后取出,研磨过400目筛网,即得到m-Bi2O4.

  • 1.2.2 材料表征方法

  • 采用X射线衍射(XRD)分析晶体结构; 采用扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析样品形貌; 采用X射线光电子能谱(XPS)分析催化剂官能团结构和元素组成; 采用紫外-可见分光光度计(UV-vis)分析光吸收性能; 采用压电响应力显微镜(PFM)分析样品压电特性; Mott-Schottky图由电化学工作站(CHI660E)测定,其中Ag/AgCl和Pt片分别作为参比电极和对电极.

  • 1.2.3 压电光催化活性实验

  • 利用氯化硝基四氮唑蓝(NBT)定量测定在光照、超声或者两者协同作用下超氧自由基(·O2-)的生成量.将60 mg的m-Bi2O4与50 mL的NBT溶液(10 μmol/L)混合; 在黑暗中通氧气30 min后,分别用超声波(40 kHz,300 W)、模拟太阳能灯(300 W氙灯)照射,或协同作用.为保持反应前后温度影响,在反应过程中投加冰块将温度控制在25~28℃; 每15 min间隔,取1.5 mL溶液,用0.22 μm过滤器过滤,滤液用紫外-可见-近红外分光光度计(UV-vis-NIR)进行分析.定量测定羟基自由基(·OH)生成量的方法同上,唯一不同是利用同浓度的二羟基对苯二甲酸(TA)溶液取代NBT进行测定.

  • 磺胺甲基嘧啶(SM,30 mg/L)降解实验与上述实验步骤相似,仅用SM取代NBT进行测试.同时,采用高效液相色谱法(HPLC,Waters E2695)测定SM浓度.

  • 2 结果和讨论

  • 2.1 样品的XPS与XRD分析

  • 图1中的XRD衍射峰为水热合成的m-Bi2O4的单斜相结构[13].它所有的衍射峰都能和数据库标准卡片JCPDS-83-0410中的数据相对应,没有其他杂峰,样品纯度较高,暗示样品中铋元素以Bi3+和Bi5+的混合价态存在.各样品的衍射峰都很尖锐,表明它们结晶性较好[14].通过XPS进一步分析了样品m-Bi2O4的表面成分及化学状态.由图2的Bi4f谱图可以再次证明铋是Bi3+和Bi5+的混合价态.m-Bi2O4中的Bi4f7/2和Bi4f5/2峰都可以很好地解卷积成双峰.Bi3+和Bi5+的结合能分别为158.2 eV(或163.4 eV)和159.3 eV(或164.5 eV),证实了m-Bi2O4中同时存在Bi3+和Bi5+.

  • 图1 m-Bi2O4的XRD图谱

  • Fig.1 XRD of m-Bi2O4

  • 2.2 样品的形貌分析

  • 通过SEM与TEM研究了m-Bi2O4样品的形貌(图3).从图3中可以观察到m-Bi2O4呈亚微米棒状颗粒结构.m-Bi2O4高分辨率透射电镜(HRTEM)表明m-Bi2O4为单晶,两个方向晶格间距分别为0.33 nm和0.30 nm,分别对应m-Bi2O4的(111)和(-311)晶面[15].这些实验结果均能很好地证明m-Bi2O4单斜相结构.

  • 图2 m-Bi2O4的Bi4f高分辨率XPS图谱

  • Fig.2 Bi4f high resolution XPS of m-Bi2O4

  • 2.3 样品的PFM分析

  • m-Bi2O4的压电性可以从压电响应力显微镜(PFM)表征结果中观察到.图4a、4b分别是m-Bi2O4某一区域的压电电势三维响应图和表面压电电位,m-Bi2O4呈现出一个粗糙度为数十纳米的平面,在材料的边缘活性部位产生最高的压电响应.图4c显示了相位信号和偏振振幅,在±5 V的偏置电场下,得到了典型的振幅-电压的蝴蝶曲线和良好的相位回路曲线,这是m-Bi2O4压电效应的直接证据[16].

  • 图3 m-Bi2O4的(a)SEM图、(b)TEM图和(c)HRTEM图

  • Fig.3 (a) SEM, (b) TEM, and (c) HRTEM images of m-Bi2O4

  • 图4 m-Bi2O4的(a)压电电势三维响应图、(b)表面压电电位和(c)振幅-电压的蝴蝶曲线

  • Fig.4 (a) 3D responsive image of piezoelectric potential, (b) surface piezoelectric potential, and (c) amplitude-voltage curves of m-Bi2O4

  • 2.4 样品的光学性能分析

  • m-Bi2O4除了具有压电特性外,还表现出优越的光学特性.根据UV-vis DRS结果(图5)得知,BiOCl样品吸收边位于384 nm附近,BaTiO3样品吸收边位于407 nm附近,而m-Bi2O4样品吸收边位于697 nm附近,表明m-Bi2O4可以完全吸收短波可见光(小于510 nm)以及紫外光.更重要的是,m-Bi2O4能够捕获大部分长波可见光和一些近红外(NIR)光,大大扩展了光吸收范围,提高了对光的利用率.

  • 图5 m-Bi2O4、BaTiO3和BiOCl的UV-vis DRS图谱

  • Fig.5 UV-vis DRS absorption spectra of m-Bi2O4, BaTiO3 and BiOCl

  • 2.5 压电光催化降解SM

  • 为探究压电效应对光催化降解SM的促进作用,配置50 mL质量浓度为30 mg/L的SM溶液,m-Bi2O4催化剂质量为60 mg,分别在单独进行光照(300 W)、单独进行超声(40 kHz,300 W)以及光和超声同时存在条件下降解SM,反应时间为60 min.SM降解效果如图6所示.其中,U在图例中代表超声波,Light代表光照.

  • 如图6a所示,在不添加催化剂条件下,对SM溶液进行光和超声协同降解,发现SM浓度没有变化,说明m-Bi2O4在催化反应中是不可或缺的,可以消除底物自身影响.同时,只添加m-Bi2O4进行暗吸附实验证明了材料具备一定的吸附能力,但其去除效果并没有显著提升,表明在后续的压电光催化降解实验中SM浓度的下降均来自SM被氧化降解.图6b为m-Bi2O4、BaTiO3和BiOCl三种催化剂在不同条件下的降解效率,可以明显看出m-Bi2O4催化效率远高于BaTiO3和BiOCl.

  • 与分别单独进行光催化和压电催化相比,在光和超声同时存在时,m-Bi2O4降解SM的效率显著提高,60 min可达到 96.46%.由图6c可以看出,压电光催化降解SM的一级反应常数为0.058 min-1,是单独光催化的1.65倍,是单独压电催化的6.13倍.这是因为m-Bi2O4在超声的作用下发生形变,产生压电势,可促进光生电子空穴高效迅速地转移和分离,降低了光生载流子的复合,提高光催化效率.另一方面,压电效应的存在可能会激发催化剂产生更多的活性自由基参与SM的降解过程.

  • 2.6 光的波长对降解SM的影响

  • 在单波长可见光和超声波的同时作用下,SM降解结果可以揭示m-Bi2O4的优异的多催化能力(图7).无论选择哪种单波长光(400、500、550 或600 nm),对SM的压电光催化降解效率都很高.在光能减弱的情况下,m-Bi2O4的压电光催化效率接近全光谱光截止前的效率,表明其在可见光响应和能量转换方面具有突出的能力.此外,随着波长增加至600 nm,降解率保持不变,进一步暗示了m-Bi2O4在实际应用中使用可见光的潜在可用性.

  • 图6(a)m-Bi2O4在不同反应条件下的降解效率,(b)m-Bi2O4、BaTiO3和 BiOCl在不同反应条件下的降解效率,以及(c)m-Bi2O4相应的反应动力学曲线

  • Fig.6 Degradation efficiency of SM by (a) m-Bi2O4, (b) m-Bi2O4, BaTiO3 and BiOCl under different reaction conditions, and (c) first-order kinetics fitting results of m-Bi2O4

  • 图7 不同波长光照条件下m-Bi2O4对SM的降解效率

  • Fig.7 Degradation efficiency of SM by m-Bi2O4 under different wavelength light irradiation

  • 2.7 压电光催化降解机理讨论

  • 为了探明m-Bi2O4的压电光催化机理,探索了其能带信息.利用Tauc Plot公式对UV-vis DRS光谱图转换得到样品的禁带宽度(Eg):

  • (αhv) 1n=Ahv-Eg.

  • 其中:α为吸收系数,h为普朗克常数,v是频率,Eg为禁带宽度,A是吸光度,n取1/2.以(αhv2为纵坐标,hv为横坐标作图,图中直线部分外延至x轴部分即为Eg.结果如图8a所示,m-Bi2O4的禁带宽度为1.80 eV,远小于BaTiO3的3.10 eV和BiOCl的3.35 eV.m-Bi2O4的带隙小,有利于载流子转移,增强催化剂的催化活性.通过外延Mott-Schottky曲线至X轴,可以得到催化剂的平带(Efb)位置.如图8b、8c所示,m-Bi2O4、BaTiO3和BiOCl的Efb值分别为-0.59、-0.48和-0.53 eV.平带电位稍低于导带边,在试验中可以将其近似于导带(CB)[17]. 因此,通过计算m-Bi2O4、BaTiO3和BiOCl的价带(VB)分别位于1.21、2.62和2.82 eV.综上所述,画出能带示意图9.

  • 由于m-Bi2O4材料的CB位置位于-0.59 eV,比O2/·O2-(-0.33 eV)的标准氧化还原电位更负.因此,理论上材料中的迁移电子与溶液中的溶解氧更容易发生反应,生成超氧自由基(·O2-)进而降解 SM.同时,由于Eg较小,与BaTiO3和BiOCl相比,m-Bi2O4更容易发生电子转移[18].但是,m-Bi2O4中自由电子浓度较低,无法自发触发SM显著降解.所以,通过引入光辐射,m-Bi2O4被可见光激发而产生电子(e-)和空穴(h+),光生电子和空穴可以直接或间接作用于SM并将其分解[19].引入超声振荡后,利用空化气泡爆破为m-Bi2O4提供压力,使材料变形,从而在材料表面产生极化电荷[20-21].在极化电场的作用下,自由电子和空穴向相反的方向运动,从而实现光生载流子的有效分离[22-23].然后,当溶液中的溶解氧捕获表面积聚的电子后与之反应生成·O2-,随后参与SM的降解.

  • 图8(a)Kubelka-Munk曲线和(b,c)Mott-Schottky 曲线

  • Fig.8 (a) Kubelka-Munk curves, (b, c) Mott-Schottky plots

  • 图9 m-Bi2O4、BaTiO3和BiOCl的能带图

  • Fig.9 Band illustrations of m-Bi2O4, BaTiO3 and BiOCl

  • 活性物质淬灭实验结果也可以证明上述推断.各活性物质对应的淬灭剂(quencher)如表1所示.分别在SM溶液中加入TBA和L-HIS,结果如图10所示,SM的降解效率只受到轻微的抑制.相应地,将抑制剂换为EDTA-2Na和TEMPOL,结果清晰地显示SM的降解效果受到显著抑制,加入EDTA-2Na降解效率降低至2.5%,加入TEMPOL后对SM降解效率降低至21.6%,表明在该反应中空穴(h+)和超氧自由基(·O2-)起主导作用.上述结果有力证明,·O2-可以在m-Bi2O4的表面上生成(式(1)).随后,通过方程式中列出的反应途径,少量的1O2和·OH的产生,可能是在弱酸性条件下,由电子对·O2-的还原形成(式(2)—(4))[24-25].用相同方法对BiOCl和BaTiO3进行活性物质淬灭实验,效果分别如图10b、10c所示.其中,BiOCl与m-Bi2O4作用机理类似,反应中同样是h+与·O2-自由基起主导作用,但其产生活性物质的产量可能少于m-Bi2O4在相同实验条件下的产量,而对于BaTiO3其淬灭实验无明显效果,因此推断其在反应中生成的活性物质较少,难以检出.

  • O2+e-O2-
    (1)
  • H++O2-OOH
    (2)
  • 2OOHH2O2+1O2
    (3)
  • H2O2+e-OH
    (4)
  • 表1 活性物质和淬灭剂的对应关系

  • Table1 Corresponding relation between active species and quenchers

  • 为了对比在不同催化条件下·O2-和·OH的产量,分别使用NBT转化和TA-PL探测方法测定催化剂m-Bi2O4在三种催化过程中·O2-和·OH的具体产量[26-27],发现对于·O2-,压电光催化协同作用可以促进其产量增加,而对于·OH来说,在单独的超声催化下,其产量达到最高(图11).通过比较也可以发现,在m-Bi2O4的催化作用中·O2-的产量明显高于·OH的产量.由此推断,在m-Bi2O4压电光催化降解SM反应中,·O2-是反应中的主要活性物质.在相同实验条件下,通过测试得到BiOCl在压电光催化过程中·O2-和·OH的具体产量,并与m-Bi2O4对比,结果如图11c所示.与上述推论一致,在相同实验条件下,由m-Bi2O4催化生成的活性物质的量明显高于BiOCl所催化生成的活性物质的量,因此在降解SM实验中,m-Bi2O4表现出更为优异的压电光催化效果.

  • 基于以上分析,m-Bi2O4的压电光催化反应过程机理如图12所示.m-Bi2O4的窄带隙使得电子在光照下容易激发,但同时它也增加了电子空穴复合的概率,这不利于载流子转移.在引入超声后,在超声周期应力作用下,m-Bi2O4发生形变产生极化电荷.在极化电场的作用下,光生电子和空穴迅速高效地向相反方向转移和分离,可有效降低光生载流子的复合[28],并且产生更多的活性自由基参与SM的降解.因此,压电-光-半导体三者的耦合效应可大幅度提高光催化降解污染物的效率.

  • 图10 不同淬灭剂对(a)m-Bi2O4、(b)BiOCl和(c)BaTiO3降解SM的影响

  • Fig.10 Effect of different quenchers on SM degradation by (a) m-Bi2O4, (b) BiOCl, and (c) BaTiO3

  • 图11 在不同催化条件下(a)·OH和(b)·O2-的产量以及(c)在压电光催化条件下m-Bi2O4和BiOCl的活性物质产量

  • Fig.11 Yields of (a) ·OH and (b) ·O2- under different catalytic conditions, and (c) active species yield of m-Bi2O4 and BiOCl under piezoelectric photocatalysis

  • 图12 压电光催化反应机理

  • Fig.12 Piezoelectric photocatalysis mechanism

  • 3 结论

  • 本文通过简单的水热法合成的m-Bi2O4在超声下显示出优异的可见光响应特性和压电性.结合这些特性,模拟太阳光和超声波协同作用可大大提高活性物质(如·O2-)的产率.同时,对SM的压电光催化协同降解效果显著,降解效率可达96.46%.窄带隙促进了电子激发和跃迁,而源自超声下压电响应的极化电场进一步促进了它们向m-Bi2O4表面的迁移以及更多的活性自由基的产生.m-Bi2O4作为一种单压电光催化剂,使用单波长光(400、500、550或600 nm)对SM的压电光催化活性几乎不变,这也表明了其实际应用的潜在前景.

  • 参考文献

    • [1] Baran W,Adamek E,Ziemiańska J,et al.Effects of the presence of sulfonamides in the environment and their influence on human health[J].Journal of Hazardous Materials,2011,196:1-15

    • [2] Wang L L,Jiang S F,Huang J,et al.Oxygen-doped biochar for the activation of ferrate for the highly efficient degradation of sulfadiazine with a distinct pathway[J].Journal of Environmental Chemical Engineering,2022,10(6):108537

    • [3] 马瑞霄,周浩,张燕辉.RGO-ZnO光催化降解抗生素及还原Cr(Ⅵ)的研究[J].工业水处理,2021,41(3):53-56;MA Ruixiao,ZHOU Hao,ZHANG Yanhui.RGO-ZnO photocatalytic antibiotics degradation and Cr(Ⅵ)reduction[J].Industrial Water Treatment,2021,41(3):53-56

    • [4] 蔡博华,邹伟,朱雪梅,等.PVA/SiO2@BiOBr纳米纤维的制备及其光催化性能[J].工业水处理,2022,42(6):140-145;CAI Bohua,ZOU Wei,ZHU Xuemei,et al.Fabrication of PVA/SiO2@BiOBr nanofibers and their photocatalytic characteristics[J].Industrial Water Treatment,2022,42(6):140-145

    • [5] Gao C M,Wei T,Zhang Y Y,et al.A photoresponsive rutile TiO2 heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution[J].Advanced Materials,2019,31(8):e1806596

    • [6] Chen Y,Deng X M,Wen J Y,et al.Piezo-promoted the generation of reactive oxygen species and the photodegradation of organic pollutants[J].Applied Catalysis B:Environmental,2019,258:118024

    • [7] Wang Z L.Piezopotential gated nanowire devices:piezotronics and piezo-phototronics[J].Nano Today,2010,5(6):540-552

    • [8] Yin X,Wu W,Zhang F S,et al.Synergetic effect of piezoelectricity and heterojunction on photocatalytic performance[J].Journal of Photochemistry and Photobiology A:Chemistry,2020,400:112661

    • [9] Tang Q,Wu J,Chen X Z,et al.Tuning oxygen vacancies in Bi4Ti3O12 nanosheets to boost piezo-photocatalytic activity[J].Nano Energy,2023,108:108202

    • [10] Gao H C,Zhang Y G,Xia H Y,et al.In situ generation of H2O2 over Ce-doped BaTiO3 catalysts for enhanced piezo-photocatalytic degradation of pollutants in aqueous solution[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,663:131030

    • [11] Chen P,Zhang Q X,Zheng X S,et al.Phosphate-modified m-Bi2O4 enhances the absorption and photocatalytic activities of sulfonamide:mechanism,reactive species,and reactive sites[J].Journal of Hazardous Materials,2020,384:121443

    • [12] Liu M M,Liu G,Liu X M,et al.One-pot synthesis of m-Bi2O4/Bi2O4-x/BiOCl with enhanced photocatalytic activity for BPA and CIP under visible-light[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,643:128772

    • [13] Cheng D,Teng M Q,Chen Y F,et al.In-situ construction of high-efficiency phase-transition induced m-Bi2O4/Bi4O7 surface heterojunction photocatalysts and mechanism investigation[J].Journal of Physics and Chemistry of Solids,2021,152:109947

    • [14] Lyu Y,Xu Z L,Nakane K,et al.A nanocrystalline oxygen-deficient bismuth oxide as an efficient adsorbent for effective visible-light-driven photocatalytic performance toward organic pollutant degradation[J].Journal of Colloid and Interface Science,2018,531:463-472

    • [15] Wang W J,Chen X Q,Liu G,et al.Monoclinic dibismuth tetraoxide:a new visible-light-driven photocatalyst for environmental remediation[J].Applied Catalysis B:Environmental,2015,176/177:444-453

    • [16] Zhou X F,Sun Q W,Zhai D,et al.Excellent catalytic performance of molten-salt-synthesized Bi0.5Na0.5TiO3 nanorods by the piezo-phototronic coupling effect[J].Nano Energy,2021,84:105936

    • [17] Yang Y,Hoffmann M R.Synthesis and stabilization of blue-black TiO2 nanotube arrays for electrochemical oxidant generation and wastewater treatment[J].Environmental Science & Technology,2016,50(21):11888-11894

    • [18] Lu S S,Liu F L,Qiu P X,et al.Photothermal-assisted photocatalytic degradation with ultrahigh solar utilization:towards practical application[J].Chemical Engineering Journal,2020,379:122382

    • [19] Wang Y J,Bai X J,Pan C S,et al.Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4[J].Journal of Materials Chemistry,2012,22(23):11568-11573

    • [20] Subramanian V,Wolf E E,Kamat P V.Catalysis with TiO2/gold nanocomposites:effect of metal particle size on the Fermi level equilibration[J].Journal of the American Chemical Society,2004,126(15):4943-4950

    • [21] Zhang M,Bai X J,Liu D,et al.Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position[J].Applied Catalysis B:Environmental,2015,164:77-81

    • [22] Li X,Wu Q,Hussain M,et al.Sodium alkoxide-mediated g-C3N4 immobilized on a composite nanofibrous membrane for preferable photocatalytic activity[J].RSC Advances,2022,12(24):15378-15384

    • [23] Wang Y B,Jiang Y,Zhao Y X,et al.Design strategies of perovskite nanofibers electrocatalysts for water splitting:a mini review[J].Chemical Engineering Journal,2023,451:138710

    • [24] Xie K F,Xu S Y,Xu K,et al.BiOCl heterojunction photocatalyst:construction,photocatalytic performance,and applications[J].Chemosphere,2023,317:137823

    • [25] Lyu L,Yu G F,Zhang L L,et al.4-phenoxyphenol-functionalized reduced graphene oxide nanosheets:a metal-free Fenton-like catalyst for pollutant destruction[J].Environmental Science & Technology,2018,52(2):747-756

    • [26] Xia D H,Shen Z R,Huang G C,et al.Red phosphorus:an earth-abundant elemental photocatalyst for green bacterial inactivation under visible light[J].Environmental Science & Technology,2015,49(10):6264-6273

    • [27] Xia D H,Lo I M C.Synthesis of magnetically separable Bi2O4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation[J].Water Research,2016,100:393-404

    • [28] Feng Y W,Li H,Ling L L,et al.Enhanced photocatalytic degradation performance by fluid-induced piezoelectric field[J].Environmental Science & Technology,2018,52(14):7842-7848

  • 参考文献

    • [1] Baran W,Adamek E,Ziemiańska J,et al.Effects of the presence of sulfonamides in the environment and their influence on human health[J].Journal of Hazardous Materials,2011,196:1-15

    • [2] Wang L L,Jiang S F,Huang J,et al.Oxygen-doped biochar for the activation of ferrate for the highly efficient degradation of sulfadiazine with a distinct pathway[J].Journal of Environmental Chemical Engineering,2022,10(6):108537

    • [3] 马瑞霄,周浩,张燕辉.RGO-ZnO光催化降解抗生素及还原Cr(Ⅵ)的研究[J].工业水处理,2021,41(3):53-56;MA Ruixiao,ZHOU Hao,ZHANG Yanhui.RGO-ZnO photocatalytic antibiotics degradation and Cr(Ⅵ)reduction[J].Industrial Water Treatment,2021,41(3):53-56

    • [4] 蔡博华,邹伟,朱雪梅,等.PVA/SiO2@BiOBr纳米纤维的制备及其光催化性能[J].工业水处理,2022,42(6):140-145;CAI Bohua,ZOU Wei,ZHU Xuemei,et al.Fabrication of PVA/SiO2@BiOBr nanofibers and their photocatalytic characteristics[J].Industrial Water Treatment,2022,42(6):140-145

    • [5] Gao C M,Wei T,Zhang Y Y,et al.A photoresponsive rutile TiO2 heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution[J].Advanced Materials,2019,31(8):e1806596

    • [6] Chen Y,Deng X M,Wen J Y,et al.Piezo-promoted the generation of reactive oxygen species and the photodegradation of organic pollutants[J].Applied Catalysis B:Environmental,2019,258:118024

    • [7] Wang Z L.Piezopotential gated nanowire devices:piezotronics and piezo-phototronics[J].Nano Today,2010,5(6):540-552

    • [8] Yin X,Wu W,Zhang F S,et al.Synergetic effect of piezoelectricity and heterojunction on photocatalytic performance[J].Journal of Photochemistry and Photobiology A:Chemistry,2020,400:112661

    • [9] Tang Q,Wu J,Chen X Z,et al.Tuning oxygen vacancies in Bi4Ti3O12 nanosheets to boost piezo-photocatalytic activity[J].Nano Energy,2023,108:108202

    • [10] Gao H C,Zhang Y G,Xia H Y,et al.In situ generation of H2O2 over Ce-doped BaTiO3 catalysts for enhanced piezo-photocatalytic degradation of pollutants in aqueous solution[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,663:131030

    • [11] Chen P,Zhang Q X,Zheng X S,et al.Phosphate-modified m-Bi2O4 enhances the absorption and photocatalytic activities of sulfonamide:mechanism,reactive species,and reactive sites[J].Journal of Hazardous Materials,2020,384:121443

    • [12] Liu M M,Liu G,Liu X M,et al.One-pot synthesis of m-Bi2O4/Bi2O4-x/BiOCl with enhanced photocatalytic activity for BPA and CIP under visible-light[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,643:128772

    • [13] Cheng D,Teng M Q,Chen Y F,et al.In-situ construction of high-efficiency phase-transition induced m-Bi2O4/Bi4O7 surface heterojunction photocatalysts and mechanism investigation[J].Journal of Physics and Chemistry of Solids,2021,152:109947

    • [14] Lyu Y,Xu Z L,Nakane K,et al.A nanocrystalline oxygen-deficient bismuth oxide as an efficient adsorbent for effective visible-light-driven photocatalytic performance toward organic pollutant degradation[J].Journal of Colloid and Interface Science,2018,531:463-472

    • [15] Wang W J,Chen X Q,Liu G,et al.Monoclinic dibismuth tetraoxide:a new visible-light-driven photocatalyst for environmental remediation[J].Applied Catalysis B:Environmental,2015,176/177:444-453

    • [16] Zhou X F,Sun Q W,Zhai D,et al.Excellent catalytic performance of molten-salt-synthesized Bi0.5Na0.5TiO3 nanorods by the piezo-phototronic coupling effect[J].Nano Energy,2021,84:105936

    • [17] Yang Y,Hoffmann M R.Synthesis and stabilization of blue-black TiO2 nanotube arrays for electrochemical oxidant generation and wastewater treatment[J].Environmental Science & Technology,2016,50(21):11888-11894

    • [18] Lu S S,Liu F L,Qiu P X,et al.Photothermal-assisted photocatalytic degradation with ultrahigh solar utilization:towards practical application[J].Chemical Engineering Journal,2020,379:122382

    • [19] Wang Y J,Bai X J,Pan C S,et al.Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4[J].Journal of Materials Chemistry,2012,22(23):11568-11573

    • [20] Subramanian V,Wolf E E,Kamat P V.Catalysis with TiO2/gold nanocomposites:effect of metal particle size on the Fermi level equilibration[J].Journal of the American Chemical Society,2004,126(15):4943-4950

    • [21] Zhang M,Bai X J,Liu D,et al.Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position[J].Applied Catalysis B:Environmental,2015,164:77-81

    • [22] Li X,Wu Q,Hussain M,et al.Sodium alkoxide-mediated g-C3N4 immobilized on a composite nanofibrous membrane for preferable photocatalytic activity[J].RSC Advances,2022,12(24):15378-15384

    • [23] Wang Y B,Jiang Y,Zhao Y X,et al.Design strategies of perovskite nanofibers electrocatalysts for water splitting:a mini review[J].Chemical Engineering Journal,2023,451:138710

    • [24] Xie K F,Xu S Y,Xu K,et al.BiOCl heterojunction photocatalyst:construction,photocatalytic performance,and applications[J].Chemosphere,2023,317:137823

    • [25] Lyu L,Yu G F,Zhang L L,et al.4-phenoxyphenol-functionalized reduced graphene oxide nanosheets:a metal-free Fenton-like catalyst for pollutant destruction[J].Environmental Science & Technology,2018,52(2):747-756

    • [26] Xia D H,Shen Z R,Huang G C,et al.Red phosphorus:an earth-abundant elemental photocatalyst for green bacterial inactivation under visible light[J].Environmental Science & Technology,2015,49(10):6264-6273

    • [27] Xia D H,Lo I M C.Synthesis of magnetically separable Bi2O4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation[J].Water Research,2016,100:393-404

    • [28] Feng Y W,Li H,Ling L L,et al.Enhanced photocatalytic degradation performance by fluid-induced piezoelectric field[J].Environmental Science & Technology,2018,52(14):7842-7848

  • 地址:江苏省南京市宁六路219号    邮编:210044

    联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

    南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司