en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李培康,男,硕士生,研究方向为永磁同步电机调速.3201932947@qq.com

通讯作者:

李生权,男,博士,教授,研究方向为复杂机电系统的建模与先进控制.sqli@yzu.edu.cn

中图分类号:TM351;TP273

文献标识码:A

DOI:10.13878/j.cnki.jnuist.20230919003

参考文献 1
Hao Z J,Yang Y,Gong Y M,et al.Linear/nonlinear active disturbance rejection switching control for permanent magnet synchronous motors[J].IEEE Transactions on Power Electronics,2021,36(8):9334-9347
参考文献 2
邱建琪,留若宸.永磁同步电机位置伺服系统改进自抗扰控制[J].电机与控制学报,2019,23(11):42-50;QIU Jianqi,LIU Ruochen.Improved active disturbance rejection control for permanent magnet synchronous motor position servo system[J].Electric Machines and Control,2019,23(11):42-50
参考文献 3
孙斌,王海霞,苏涛,等.永磁同步电机调速系统非线性自抗扰控制器设计与参数整定[J].中国电机工程学报,2020,40(20):6715-6726;SUN Bin,WANG Haixia,SU Tao,et al.Nonlinear active disturbance rejection controller design and tuning for permanent magnet synchronous motor speed control system[J].Proceedings of the CSEE,2020,40(20):6715-6726
参考文献 4
Wang B,Tian M H,Yu Y,et al.Enhanced ADRC with quasi-resonant control for PMSM speed regulation considering aperiodic and periodic disturbances[J].IEEE Transactions on Transportation Electrification,2022,8(3):3568-3577
参考文献 5
Ye S C,Yao X X.A modified flux sliding-mode observer for the sensorless control of PMSMs with online stator resistance and inductance estimation[J].IEEE Transactions on Power Electronics,2020,35(8):8652-8662
参考文献 6
Huang Y W,Huang W C,Chen S B,et al.Complementary sliding mode control with adaptive switching gain for PMSM[J].Transactions of the Institute of Measurement and Control,2019,41(11):3199-3205
参考文献 7
李政,胡广大,崔家瑞,等.永磁同步电机调速系统的积分型滑模变结构控制[J].中国电机工程学报,2014,34(3):431-437;LI Zheng,HU Guangda,CUI Jiarui,et al.Sliding-mode variable structure control with integral action for permanent magnet synchronous motor[J].Proceedings of the CSEE,2014,34(3):431-437
参考文献 8
Liu D,Li M G.Adaptive predictive control system with disturbance compensation based on self-recurrent wavelet neural network[J].International Journal of Advancements in Computing Technology,2011,3(10):330-338
参考文献 9
Hang J,Zhang J B,Xia M J,et al.Interturn fault diagnosis for model-predictive-controlled-PMSM based on cost function and wavelet transform[J].IEEE Transactions on Power Electronics,2020,35(6):6405-6418
参考文献 10
Han J Q.From PID to active disturbance rejection control[J].IEEE Transactions on Industrial Electronics,2009,56(3):900-906
参考文献 11
焦姣姣,张兴华.永磁同步电机调速系统的自抗扰控制器设计[J].微电机,2015,48(11):77-80;JIAO Jiaojiao,ZHANG Xinghua.Design of ADRC in PMSM speed control system[J].Micromotors,2015,48(11):77-80
参考文献 12
Liu C Q,Luo G Z,Chen Z,et al.A linear ADRC-based robust high-dynamic double-loop servo system for aircraft electro-mechanical actuators[J].Chinese Journal of Aeronautics,2019,32(9):2174-2187
参考文献 13
Tian M H,Wang B,Yu Y,et al.Discrete-time repetitive control-based ADRC for current loop disturbances suppression of PMSM drives[J].IEEE Transactions on Industrial Informatics,2022,18(5):3138-3149
参考文献 14
Wu Z L,Li D H,Liu Y H,et al.Performance analysis of improved ADRCs for a class of high-order processes with verification on main steam pressure control[J].IEEE Transactions on Industrial Electronics,2023,70(6):6180-6190
参考文献 15
Zhu K K,Ruan L.Dual active disturbance rejection control of permanent magnet synchronous wind generators[J].Journal of Power Electronics,2023,23(7):1086-1097
参考文献 16
Lu H,Li S Q,Feng B,et al.An enhanced sensorless control based on active disturbance rejection controller for a PMSM system:design and hardware implementation[J].Assembly Automation,2022,42(4):445-457
参考文献 17
刘志刚,李世华.基于永磁同步电机模型辨识与补偿的自抗扰控制器[J].中国电机工程学报,2008,28(24):118-123;LIU Zhigang,LI Shihua.Active disturbance rejection controller based on permanent magnetic synchronous motor model identification and compensation[J].Proceedings of the CSEE,2008,28(24):118-123
参考文献 18
Li S H,Zong K,Liu H X.A composite speed controller based on a second-order model of permanent magnet synchronous motor system[J].Transactions of the Institute of Measurement and Control,2011,33(5):522-541
目录contents

    摘要

    针对永磁同步电机(PMSM)调速系统中,存在的建模误差和负载突变等内外扰动影响转速稳定的问题,提出一种基于负载估计的复合自抗扰调速策略.首先,在速度环采用自抗扰控制器替代PI控制器,以改善系统转速与超调之间的矛盾.其次,设计一个负载转矩观测器,通过转速和电流信号直接对负载转矩进行实时的估计和补偿,来解决扩张状态观测器(ESO)对负载突变响应较慢的问题.最后,基于Matlab/Simulink环境搭建了复合自抗扰调速系统的半实物实验平台,并与传统PI控制和线性自抗扰控制进行对比验证.仿真和实验结果表明,所提出的基于负载估计的复合自抗扰控制策略相较于传统控制方法在负载突变时转速变化量减少了30%以上,具有较优越的抗干扰能力和调速性能.

    Abstract

    To address the internal and external disturbances in Permanent Magnet Synchronous Motor (PMSM) such as modeling errors and sudden load variation,a load estimation-based composite Active Disturbance Rejection Control (ADRC) approach is proposed for PMSM speed regulation.ADRC is adopted to replace the PI controller in the speed loop to improve the performance of control system and solve the contradiction between system rapidity and overshooting.A load torque observer is designed to correct the slow response of ESO to sudden load variation by directly estimating and compensating the load torque in real time via speed and current signals.Additionally,a semi-physical experimental platform of composite ADRC for speed regulation is constructed in Matlab/Simulink environment,and the proposed composite ADRC is compared with traditional PI control and linear ADRC.The results illustrate that the proposed approach outperforms conventional controller by reducing the speed variation by more than 30% under abrupt load variation,and has superior disturbance rejection ability and speed regulation performance.

  • 0 引言

  • 永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)由于其体积小、性能优异、结构简单、效率高等特点,在工业领域尤其是航空航天等领域得到广泛的应用[1-2].但是在实际工程应用中,PMSM容易受建模误差、未知动力学因素以及负载突变的影响,导致整个系统调速控制的性能在总扰动的影响下产生明显的下降,且扰动的类型和来源往往复杂而多样,很难获得总扰动的具体模型[3-4].传统PID控制器容易受内外扰动的影响,很难在PMSM的调速控制中获得较满意的性能,因此,对速度控制性能更优异的PMSM控制算法的研究逐渐成为几十年来工业上面临的主要问题之一[5].目前很多更先进的控制算法已经应用于PMSM调速控制中,如滑模变结构控制[6-7]、神经网络控制[8]、模型预测控制[9]等.

  • 对于系统的建模误差以及内外扰动问题,Han[10]在经典PID控制的思想上提出一种新型的不依赖被控对象具体模型且能够有效抑制系统扰动的控制方法,即自抗扰控制(Active Disturbance Rejection Control,ADRC).在现有的众多控制方法中,自抗扰控制被认为是一种具有强抗扰性和无模型特性的最优控制方案[11-13],因而一些学者将这种不依赖模型且具有优异动静态性能的控制方法应用在永磁同步电机的控制领域.文献[14]将PMSM的内部建模误差、未知动力学因素以及外部负载突变等扰动归为系统的总扰动,将其扩张成系统的一个状态量,并利用扩张状态观测器(Extended State Observer,ESO)通过系统的速度状态量估计出系统的总扰动并加以补偿.针对非线性ADRC控制器参数较多的问题,文献[15]提出了速度环一阶线性ADRC控制器,文献[16]利用极点配置的方法将二阶ESO的两个增益整定为一个增益,在确保系统稳定的情况下减小了调参难度.而文献[17]则提出一种PMSM模型辨识与补偿的自抗扰控制器,通过对电机转动惯量和阻尼系数的辨识补偿一部分可知扰动,减小了ESO所要估计的扰动幅值以及估计负担,并且提高了估计的精度以及系统的稳定性.但是,该方法中ESO所要估计的扰动项依然较多,且对外部负载转矩变化产生的扰动的估计依赖于转速误差,经过速度环ADRC才能够得到估计和补偿,因此控制系统对负载突变的响应要滞后于转速变化,导致负载突变时转速波动较大,且并不能及时地恢复至给定转速[18]

  • 针对上述问题,本文提出一种基于负载估计的PMSM复合自抗扰控制器,利用系统状态量,通过搭建一个负载转矩观测器,实时地估计外部扰动中的负载转矩并补偿给电机,而除负载转矩以外的总扰动则利用ESO来估计并补偿.这样将控制器的输出分为两个部分,进一步减小ESO的估计负担,提高系统的稳定性,同时得到快速性更好的控制量.最后,通过仿真与实验对基于负载估计的PMSM复合自抗扰控制方法进行调速性能的验证.

  • 1 永磁同步电机的数学模型

  • 假设电机工作在理想状态下,忽略掉电机铁芯的饱和,不计电机中产生的涡流和磁滞损耗,并认为电机中的电流为三相正弦波电流,可以得到d-q坐标下表贴式PMSM的电压方程如式(1)所示:

  • ud=Rsid+Lid˙-npωmLiq,uq=Rsiq+Liq˙+npωmLid+ϕf.
    (1)
  • 式中:uduq分别为定子电压在d-q轴上的分量; idiq分别为定子电流在d-q轴上的分量; ωm为电机的机械角速度; Rs为定子电阻; L为定子电感; np为电机极对数; φf为永磁体磁链.表贴式PMSM的电磁转矩方程如式(2)所示:

  • Te=32npϕfiq.
    (2)
  • 电机的机械运动方程如式(3)所示:

  • Jω˙m=Te-TL-Bωm
    (3)
  • 式中:J为PMSM的转动惯量; ω˙m为电机机械角速度的微分; B为黏滞摩擦系数; TL为电机的负载转矩.

  • 2 复合自抗扰控制器的设计

  • 文献[18]指出,在负载突变时速度环ESO基于转速误差的方法并不能及时有效地估计总扰动.因此设计一个负载转矩观测器,将ESO较难估计和补偿的突变负载扰动利用负载转矩观测器来估计和补偿.这样,得到基于负载估计的PMSM复合ADRC的原理框图如图1所示.

  • 2.1 负载转矩观测器的设计

  • 根据电机的运动方程式(3)得,在电机空载稳定运行时,电磁转矩与转速保持平衡,即:

  • Te-Bωm=0.
    (4)
  • 当负载由零突变时式(4)不再平衡,电机转速产生变化,此时对电机补偿一定的电磁转矩Tec,电机运动方程如式(5)所示:

  • Jω˙m=Te-TL-Bωm+Tec.
    (5)
  • 假设对电机补偿的电磁转矩Tec与由负载突变产生的负载转矩相等,即Tec=TL,则转矩与转速依然平衡,电机转速保持不变.

  • 根据电磁转矩与电流的关系式(2)得,可以通过补偿iq电流来达到对电机补偿电磁转矩的目的,且补偿的电流iqc

  • iqc=23npϕfTec=23npϕfTL.
    (6)
  • 由于负载转矩难以直接测量,因此根据电机运动方程式(3),利用系统的状态量iqωm间接测量出负载转矩的大小,负载转矩与转速及电流的关系如式(7)所示:

  • 图1 基于负载估计的永磁同步电机复合自抗扰调速系统原理框图

  • Fig.1 Principle block diagram of composite ADRC for PMSM speed regulation based on load estimation

  • TL=32npϕfiq-Bωm-Jω˙m.
    (7)
  • 对等式两边同时进行拉式变换,得到负载转矩观测器为

  • T^L(s)=32npϕfiq(s)-Bωm(s)-Jsωm(s).
    (8)
  • 由此,将对ESO估计性能影响较大的突变负载通过负载转矩观测器来估计,并以iqc的形式加以补偿,如图2所示.ESO对除负载转矩外的总扰动以iq0的形式加以补偿,如图1中速度环所示.

  • 图2 负载转矩观测器

  • Fig.2 Load torque observer

  • 2.2 复合自抗扰控制器的设计

  • 对于除外部负载突变以外的所有扰动,本文通过ESO来估计并加以补偿.自抗扰控制器主要由跟踪微分器(Tracking Differentiator,TD)、扩张状态观测器(ESO)和非线性状态误差反馈控制规律(Nonlinear States Error Feed-Back,NLSEF)三部分组成.在ADRC中,TD环节主要用来安排输入信号的过渡过程并且提取其微分信号,而对于一阶转速环对象,二阶ESO的输出为转速信号和对扰动项的观测信号,因此本文采用省略了TD模块的一阶线性自抗扰控制器,利用直接误差代替ESO和NLSEF中的非线性函数来简化系统结构.

  • 外部负载转矩由负载转矩观测器补偿后,一阶转速环被控对象模型如式(9)所示:

  • ω˙m=b0iq+a(t).
    (9)
  • 式中,at)为系统除外部负载突变之外的总扰动,如式(10)所示:

  • a(t)=b-b0iq-BJωm.
    (10)
  • 式中: b=32npϕfJ; b0为对b的估计.

  • 针对转速环一阶被控对象,设计其一阶线性控制器,其ESO模型和LSEF模型分别如式(11)、式(12)所示:

  • e1=z1-ωm,z˙1=z2-β1e1+b0u,z˙2=-β2e1,
    (11)
  • e2=ωm*-z1,u0=kpe2,iq0=u0-z2/b0.
    (12)
  • 式中:ωm为系统输出; ωm*为系统的期望输出; z1为ESO对输出信号ωm的估计; z2为ESO对系统总扰动at)的估计; u0为控制律; iq0为转速环控制器输出; z2/b0为ESO对总扰动的补偿; β1β2为ESO的增益; kp为LSEF的增益.由于系统实际参数和建模参数的差被认为是建模误差而被归于内部扰动,因此,在电机参数产生变化时,ESO能够估计出总扰动的变化从而进行准确的扰动补偿.

  • 由此,复合自抗扰控制器的输出iq*

  • iq*=iqc+iq0.
    (13)
  • 由式(11)、式(12)可知,所设计的复合自抗扰控制器有β1β2kpb0共4个参数,存在一定的调参困难.将ESO的模型写成矩阵的形式得到:

  • (14)
  • 由式(14)可得ESO特征方程如式(15)所示:

  • (15)
  • 为了保证系统的稳定性,将观测器特征方程的两个极点配置在-pp>0)处,可以得到:

  • λ(s)=(s+p)2=s2+β1s+β2.
    (16)
  • 根据式(16)可得,β1=2pβ2=p2,由此控制器所需要调的参数减小为3个.p为ESO的带宽,其决定了ESO对扰动的估计速度,当p过大时,会引入高频噪声.即p取值越大,ESO对速度信号ωm的跟踪越快且系统输出的速度响应曲线越平滑,但当p过大时,速度响应曲线会产生振荡.

  • 3 仿真与实验验证

  • 3.1 Simulink仿真

  • 为了验证所设计的控制器对电机转速的控制效果,在Matlab/Simulink环境下搭建了控制系统的仿真模型并进行了实验.仿真中采用与实验平台PMSM相同的参数如表1所示.

  • 表1 PMSM参数

  • Table1 Parameters of PMSM

  • 为了更好地分析控制器的性能,速度环分别采用PI、ADRC以及复合ADRC三种控制器进行对比.三种控制系统中,设置固定步长0.01 ms,电流环PI控制器采用相同的参数kp=9,ki=3 300; 速度环PI控制器参数为kp=0.8,ki=120; 速度环ADRC与复合ADRC采用相同的参数为p=3 800,b0=1 500; kp=0.3.在给定转速为500和1 000 r/min且空载启动的仿真情况下,三种控制器的输出转速、电流iq曲线如图3所示.在转速恒定为500 r/min的仿真情况下,0.1 s和0.2 s时分别突加、突减0.5 N·m的负载,0.3 s时转速突变至1 000 r/min,0.4和0.5 s时分别突加、突减0.5 N·m的负载,三种控制器的输出转速、电流iq曲线如图4所示.

  • 由图3a得,空载启动时,PI控制系统牺牲了系统的超调来获得较好的快速性,相比之下,ADRC和基于负载估计的复合ADRC转速响应不存在超调,其转速响应基本一致.图3b表明,在空载时,ADRC和基于负载估计的复合ADRC具有快速性相同的iq.由图4a、4b可见,基于负载估计的复合ADRC输出电流iq快速性以及转速的响应速度和抗干扰能力均优于线性ADRC和PI控制.

  • 3.2 调速系统实验平台验证

  • 为了验证所提出的基于负载估计的复合自抗扰调速控制设计的优越性,在线仿真完成后,将Matlab/Simulink中的模型代码下载至DSP(型号:TMS320F28335),并通过DSP采集和处理所需要的PMSM(型号:SM060R20B30MNAD)的转子信息,最后将生成的调制信号传输至功率板(型号:IRAM136-1061A),实现对PMSM的实时控制.实验过程中,利用磁粉测功机(型号:GZC2)对电机进行加减载,利用直流电压恒流电源(型号:KX8010)和开关电源(型号:S-100-24)对功率板及DSP供电,最终搭建的PMSM调速实验平台如图5所示.

  • 图3 空载时的调速仿真性能对比

  • Fig.3 Comparison of speed control performance simulated under no load

  • 图4 负载突变时的抗扰仿真性能对比

  • Fig.4 Comparison of disturbance resistance performance simulated in case of sudden load variation

  • 在空载运行的速度响应实验中,转速按照0、500、1 000 r/min进行变速给定,在PID控制中:kp=2 000,ki=5; ADRC控制器中:p=4 000、b0=1 000、kp=0.03; 复合ADRC控制器中:p=4 000、b0=1 000、kp=0.03,得到三种控制器的输出转速和电流响应如图6所示.在加载实验中,电机给定转速为500 r/min和1 000 r/min,在PID控制中:kp=2 000,ki=5; ADRC控制器中:p=2 500、b0=1 000、kp=0.08; 复合ADRC控制器中:p=2 500、b0=1 000、kp=0.08.分别进行加减0.1 N·m的负载后,得到在15%负载情况下的三种控制器的输出转速和电流响应如图7所示.

  • 由图6a可见,在0、500、1 000 r/min的速度响应实验中,电机运行至给定转速后能够保持稳定,但PI控制的输出转速产生了超调,而ADRC和基于负载估计的复合ADRC在超调和响应速度方面的控制性能都优于PI控制,且由于没有外部负载,基于负载估计的复合ADRC和ADRC的输出转速、电流iq的性能基本一致.

  • 图5 PMSM调速实验平台

  • Fig.5 PMSM speed control experimental platform

  • 图6 空载时的动态性能对比

  • Fig.6 Comparison of dynamic performance under no load

  • 图7 负载突变时的抗扰性能对比

  • Fig.7 Comparison of disturbance resistance performance in case of sudden load variation

  • 在抗干扰实验中,采用磁粉测功机进行加载,由图7b可见,外部负载突变时,基于负载估计的复合ADRC输出控制量iq的快速性优于ADRC和PI控制.由图7a可见,达到稳定转速500 r/min后,突加负载时复合ADRC的输出转速动态速降为25 r/min,转速恢复至给定值所需的调节时间为0.57 s,而线性ADRC和PI控制的转速动态速降分别为36、90 r/min,调节时间分别为0.73、0.88 s; 当转速到达1 000 r/min并稳定后,在进行相同加载的情况下,复合ADRC的输出转速动态速降为30 r/min,调节时间为0.42 s,而线性ADRC和PI控制的转速动态速降分别为44、100 r/min,调节时间分别为0.59、0.81 s,所提出的控制策略相较于上述两种控制算法转速变化均减小30%.根据得到的输出转速和电流曲线可知,所提出的控制方法在负载突变时的速度变化更小,可以更快速地恢复至给定速度,与线性ADRC和PI控制相比,表现出了较好的抗扰性能和快速性.

  • 4 结论

  • 针对传统PMSM调速系统中,负载突变、建模误差等内外扰动影响速度控制性能的问题,在速度环采用自抗扰控制策略,并在此基础上利用负载估计的方法设计了复合自抗扰控制器.仿真和结果表明:文中设计的基于负载估计的复合ADRC与线性ADRC和PI控制器相比,在同样加15%负载的情况下,转速变化量减小了30%以上,可以有效抑制干扰,并提高调速系统的转速跟踪性能和快速性.

  • 参考文献

    • [1] Hao Z J,Yang Y,Gong Y M,et al.Linear/nonlinear active disturbance rejection switching control for permanent magnet synchronous motors[J].IEEE Transactions on Power Electronics,2021,36(8):9334-9347

    • [2] 邱建琪,留若宸.永磁同步电机位置伺服系统改进自抗扰控制[J].电机与控制学报,2019,23(11):42-50;QIU Jianqi,LIU Ruochen.Improved active disturbance rejection control for permanent magnet synchronous motor position servo system[J].Electric Machines and Control,2019,23(11):42-50

    • [3] 孙斌,王海霞,苏涛,等.永磁同步电机调速系统非线性自抗扰控制器设计与参数整定[J].中国电机工程学报,2020,40(20):6715-6726;SUN Bin,WANG Haixia,SU Tao,et al.Nonlinear active disturbance rejection controller design and tuning for permanent magnet synchronous motor speed control system[J].Proceedings of the CSEE,2020,40(20):6715-6726

    • [4] Wang B,Tian M H,Yu Y,et al.Enhanced ADRC with quasi-resonant control for PMSM speed regulation considering aperiodic and periodic disturbances[J].IEEE Transactions on Transportation Electrification,2022,8(3):3568-3577

    • [5] Ye S C,Yao X X.A modified flux sliding-mode observer for the sensorless control of PMSMs with online stator resistance and inductance estimation[J].IEEE Transactions on Power Electronics,2020,35(8):8652-8662

    • [6] Huang Y W,Huang W C,Chen S B,et al.Complementary sliding mode control with adaptive switching gain for PMSM[J].Transactions of the Institute of Measurement and Control,2019,41(11):3199-3205

    • [7] 李政,胡广大,崔家瑞,等.永磁同步电机调速系统的积分型滑模变结构控制[J].中国电机工程学报,2014,34(3):431-437;LI Zheng,HU Guangda,CUI Jiarui,et al.Sliding-mode variable structure control with integral action for permanent magnet synchronous motor[J].Proceedings of the CSEE,2014,34(3):431-437

    • [8] Liu D,Li M G.Adaptive predictive control system with disturbance compensation based on self-recurrent wavelet neural network[J].International Journal of Advancements in Computing Technology,2011,3(10):330-338

    • [9] Hang J,Zhang J B,Xia M J,et al.Interturn fault diagnosis for model-predictive-controlled-PMSM based on cost function and wavelet transform[J].IEEE Transactions on Power Electronics,2020,35(6):6405-6418

    • [10] Han J Q.From PID to active disturbance rejection control[J].IEEE Transactions on Industrial Electronics,2009,56(3):900-906

    • [11] 焦姣姣,张兴华.永磁同步电机调速系统的自抗扰控制器设计[J].微电机,2015,48(11):77-80;JIAO Jiaojiao,ZHANG Xinghua.Design of ADRC in PMSM speed control system[J].Micromotors,2015,48(11):77-80

    • [12] Liu C Q,Luo G Z,Chen Z,et al.A linear ADRC-based robust high-dynamic double-loop servo system for aircraft electro-mechanical actuators[J].Chinese Journal of Aeronautics,2019,32(9):2174-2187

    • [13] Tian M H,Wang B,Yu Y,et al.Discrete-time repetitive control-based ADRC for current loop disturbances suppression of PMSM drives[J].IEEE Transactions on Industrial Informatics,2022,18(5):3138-3149

    • [14] Wu Z L,Li D H,Liu Y H,et al.Performance analysis of improved ADRCs for a class of high-order processes with verification on main steam pressure control[J].IEEE Transactions on Industrial Electronics,2023,70(6):6180-6190

    • [15] Zhu K K,Ruan L.Dual active disturbance rejection control of permanent magnet synchronous wind generators[J].Journal of Power Electronics,2023,23(7):1086-1097

    • [16] Lu H,Li S Q,Feng B,et al.An enhanced sensorless control based on active disturbance rejection controller for a PMSM system:design and hardware implementation[J].Assembly Automation,2022,42(4):445-457

    • [17] 刘志刚,李世华.基于永磁同步电机模型辨识与补偿的自抗扰控制器[J].中国电机工程学报,2008,28(24):118-123;LIU Zhigang,LI Shihua.Active disturbance rejection controller based on permanent magnetic synchronous motor model identification and compensation[J].Proceedings of the CSEE,2008,28(24):118-123

    • [18] Li S H,Zong K,Liu H X.A composite speed controller based on a second-order model of permanent magnet synchronous motor system[J].Transactions of the Institute of Measurement and Control,2011,33(5):522-541

  • 参考文献

    • [1] Hao Z J,Yang Y,Gong Y M,et al.Linear/nonlinear active disturbance rejection switching control for permanent magnet synchronous motors[J].IEEE Transactions on Power Electronics,2021,36(8):9334-9347

    • [2] 邱建琪,留若宸.永磁同步电机位置伺服系统改进自抗扰控制[J].电机与控制学报,2019,23(11):42-50;QIU Jianqi,LIU Ruochen.Improved active disturbance rejection control for permanent magnet synchronous motor position servo system[J].Electric Machines and Control,2019,23(11):42-50

    • [3] 孙斌,王海霞,苏涛,等.永磁同步电机调速系统非线性自抗扰控制器设计与参数整定[J].中国电机工程学报,2020,40(20):6715-6726;SUN Bin,WANG Haixia,SU Tao,et al.Nonlinear active disturbance rejection controller design and tuning for permanent magnet synchronous motor speed control system[J].Proceedings of the CSEE,2020,40(20):6715-6726

    • [4] Wang B,Tian M H,Yu Y,et al.Enhanced ADRC with quasi-resonant control for PMSM speed regulation considering aperiodic and periodic disturbances[J].IEEE Transactions on Transportation Electrification,2022,8(3):3568-3577

    • [5] Ye S C,Yao X X.A modified flux sliding-mode observer for the sensorless control of PMSMs with online stator resistance and inductance estimation[J].IEEE Transactions on Power Electronics,2020,35(8):8652-8662

    • [6] Huang Y W,Huang W C,Chen S B,et al.Complementary sliding mode control with adaptive switching gain for PMSM[J].Transactions of the Institute of Measurement and Control,2019,41(11):3199-3205

    • [7] 李政,胡广大,崔家瑞,等.永磁同步电机调速系统的积分型滑模变结构控制[J].中国电机工程学报,2014,34(3):431-437;LI Zheng,HU Guangda,CUI Jiarui,et al.Sliding-mode variable structure control with integral action for permanent magnet synchronous motor[J].Proceedings of the CSEE,2014,34(3):431-437

    • [8] Liu D,Li M G.Adaptive predictive control system with disturbance compensation based on self-recurrent wavelet neural network[J].International Journal of Advancements in Computing Technology,2011,3(10):330-338

    • [9] Hang J,Zhang J B,Xia M J,et al.Interturn fault diagnosis for model-predictive-controlled-PMSM based on cost function and wavelet transform[J].IEEE Transactions on Power Electronics,2020,35(6):6405-6418

    • [10] Han J Q.From PID to active disturbance rejection control[J].IEEE Transactions on Industrial Electronics,2009,56(3):900-906

    • [11] 焦姣姣,张兴华.永磁同步电机调速系统的自抗扰控制器设计[J].微电机,2015,48(11):77-80;JIAO Jiaojiao,ZHANG Xinghua.Design of ADRC in PMSM speed control system[J].Micromotors,2015,48(11):77-80

    • [12] Liu C Q,Luo G Z,Chen Z,et al.A linear ADRC-based robust high-dynamic double-loop servo system for aircraft electro-mechanical actuators[J].Chinese Journal of Aeronautics,2019,32(9):2174-2187

    • [13] Tian M H,Wang B,Yu Y,et al.Discrete-time repetitive control-based ADRC for current loop disturbances suppression of PMSM drives[J].IEEE Transactions on Industrial Informatics,2022,18(5):3138-3149

    • [14] Wu Z L,Li D H,Liu Y H,et al.Performance analysis of improved ADRCs for a class of high-order processes with verification on main steam pressure control[J].IEEE Transactions on Industrial Electronics,2023,70(6):6180-6190

    • [15] Zhu K K,Ruan L.Dual active disturbance rejection control of permanent magnet synchronous wind generators[J].Journal of Power Electronics,2023,23(7):1086-1097

    • [16] Lu H,Li S Q,Feng B,et al.An enhanced sensorless control based on active disturbance rejection controller for a PMSM system:design and hardware implementation[J].Assembly Automation,2022,42(4):445-457

    • [17] 刘志刚,李世华.基于永磁同步电机模型辨识与补偿的自抗扰控制器[J].中国电机工程学报,2008,28(24):118-123;LIU Zhigang,LI Shihua.Active disturbance rejection controller based on permanent magnetic synchronous motor model identification and compensation[J].Proceedings of the CSEE,2008,28(24):118-123

    • [18] Li S H,Zong K,Liu H X.A composite speed controller based on a second-order model of permanent magnet synchronous motor system[J].Transactions of the Institute of Measurement and Control,2011,33(5):522-541

  • 地址:江苏省南京市宁六路219号    邮编:210044

    联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

    南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司