en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

孙波,男,硕士生,研究方向为GNSS-R潮位反演.1272523782@qq.com

通讯作者:

王新志,男,博士,副教授,研究方向为GNSS电离层、GNSS气象学和工程测量.48984755@qq.com

中图分类号:P228.4;P731.23

文献标识码:A

DOI:10.13878/j.cnki.jnuist.20221024003

参考文献 1
宁津生,姚宜斌,张小红.全球导航卫星系统发展综述[J].导航定位学报,2013,1(1):3-8.NING Jinsheng,YAO Yibin,ZHANG Xiaohong.Review of the development of global satellite navigation system[J].Journal of Navigation and Positioning,2013,1(1):3-8
参考文献 2
Asgarimehr M,Wickert J,Reich S.TDS-1 GNSS reflectometry:development and validation of forward scattering winds[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(11):4534-4541
参考文献 3
陈庆亮,郭业才,王强,等.北斗反射信号海风探测数据分析与检定[J].南京信息工程大学学报(自然科学版),2015,7(4):338-342.CHEN Qingliang,GUO Yecai,WANG Qiang,et al.Analysis and verification of the ocean surface wind measurement detected with Beidou reflected signals[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2015,7(4):338-342
参考文献 4
金双根,张勤耘,钱晓东.全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景[J].测绘学报,2017,46(10):1389-1398.JIN Shuanggen,ZHANG Qinyun,QIAN Xiaodong.New progress and application prospects of global navigation satellite system reflectometry(GNSS+R)[J].Acta Geodaetica et Cartographica Sinica,2017,46(10):1389-1398
参考文献 5
刘经南,邵连军,张训械.GNSS-R研究进展及其关键技术[J].武汉大学学报(信息科学版),2007,32(11):955-960.LIU Jingnan,SHAO Lianjun,ZHANG Xunxie.Advances in GNSS-R studies and key technologies[J].Geomatics and Information Science of Wuhan University,2007,32(11):955-960
参考文献 6
梁勇,杨磊,吴秋兰,等.地表粗糙度影响下的GNSS-R土壤湿度反演仿真分析[J].武汉大学学报(信息科学版),2018,43(10):1546-1552.LIANG Yong,YANG Lei,WU Qiulan,et al.Simulation of soil roughness impact in GNSS-R soil moisture retrieval[J].Geomatics and Information Science of Wuhan University,2018,43(10):1546-1552
参考文献 7
邓攀,王泽民,安家春,等.利用小波分解的GNSS-R雪厚反演改进算法[J].武汉大学学报(信息科学版),2021,46(6):863-870.DENG Pan,WANG Zemin,AN Jiachun,et al.An improved algorithm based on wavelet decomposition to retrieve snow depth using GNSS-R signals[J].Geomatics and Information Science of Wuhan University,2021,46(6):863-870
参考文献 8
Martin-Neira M.A passive reflectometry and interferometry system(PARIS):application to ocean altimetry[J].ESA Journal,1993,17(4):331-355
参考文献 9
Martin-Neira M,Colmenarejo P,Runi G,et al.Ocean altimetry using the carrier phase of GNSS reflected signals[J].Cersat Journal,2000,11(22):1-10
参考文献 10
Martin-Neira M,Caparrini M,Font-Rossello J,et al.The PARIS concept:an experimental demonstration of sea surface altimetry using GPS reflected signals[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(1):142-150
参考文献 11
Geremia-Nievinski F,Hobiger T,Haas R,et al.SNR-based GNSS reflectometry for coastal sea-level altimetry:results from the first IAG inter-comparison campaign[J].Journal of Geodesy,2020,94(8):70
参考文献 12
Santamaría-Gómez A,Gravelle M,Dangendorf S,et al.Uncertainty of the 20th century sea-level rise due to vertical land motion errors[J].Earth and Planetary Science Letters,2017,473:24-32
参考文献 13
Larson K M,Löfgren J S,Haas R.Coastal sea level measurements using a single geodetic GPS receiver[J].Advances in Space Research,2013,51(8):1301-1310
参考文献 14
Löfgren J S,Haas R.Sea level measurements using multi-frequency GPS and GLONASS observations[J].EURASIP Journal on Advances in Signal Processing,2014,2014(1):1-13
参考文献 15
Jin S G,Qian X D,Wu X.Sea level change from BeiDou navigation satellite system-reflectometry(BDS-R):first results and evaluation[J].Global and Planetary Change,2017,149:20-25
参考文献 16
陈昊晟,金双根,业明达,等.利用多系统GNSS干涉反射测量估计长江巴东水位变化[J].南京信息工程大学学报(自然科学版),2021,13(6):686-692.CHEN Haosheng,JIN Shuanggen,YE Mingda,et al.Water level changes at Badong station of the Yangtze River from multi-GNSS interferometric reflectomery[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2021,13(6):686-692
参考文献 17
Roussel N,Ramillien G,Frappart F,et al.Sea level monitoring and sea state estimate using a single geodetic receiver[J].Remote Sensing of Environment,2015,171:261-277
参考文献 18
Wang X L,He X F,Zhang Q.Evaluation and combination of quad-constellation multi-GNSS multipath reflectometry applied to sea level retrieval[J].Remote Sensing of Environment,2019,231:111229
参考文献 19
陈殊,何秀凤,王笑蕾,等.基于小波分析的多模多频GNSS-MR潮位反演[J].大地测量与地球动力学,2022,42(4):365-370.CHEN Shu,HE Xiufeng,WANG Xiaolei,et al.Sea level retrieval using multi-GNSS multipath reflectometry based on wavelet analysis[J].Journal of Geodesy and Geodynamics,2022,42(4):365-370
参考文献 20
王杰,何秀凤,王笑蕾,等.小波分析在GNSS-IR潮位反演中的应用[J].导航定位学报,2020,8(2):82-89.WANG Jie,HE Xiufeng,WANG Xiaolei,et al.Application of wavelet analysis in tidal by GNSS-IR[J].Journal of Navigation and Positioning,2020,8(2):82-89
参考文献 21
明眉,岳东杰,朱少林.基于BDS-3/GPS多频数据的GNSS-R海面高度反演方法研究[J].激光与光电子学进展,2023,60(7):75-82.MING Mei,YUE Dongjie,ZHU Shaolin.Research on GNSS-R tide height inversion method based on BDS-3/GPS multi-frequency data[J].Laser & Optoelectronics Progress,2023,60(7):75-82
参考文献 22
Larson K M,Ray R D,Nievinski F G,et al.The accidental tide gauge:a GPS reflection case study from Kachemak Bay,Alaska[J].IEEE Geoscience and Remote Sensing Letters,2013,10(5):1200-1204
参考文献 23
Wang X L,Zhang Q,Zhang S C.Water levels measured with SNR using wavelet decomposition and Lomb-Scargle periodogram[J].GPS Solutions,2018,22(1):22
参考文献 24
位秀雷,刘树勇.多级奇异值分解和SG的通信雷达信号降噪方法[J].武汉理工大学学报(交通科学与工程版),2020,44(4):658-662.WEI Xiulei,LIU Shuyong.Noise reduction method of communication radar signal based on multilevel singular value decomposition and Savitzky-Golay[J].Journal of Wuhan University of Technology(Transportation Science & Engineering),2020,44(4):658-662
参考文献 25
胡顺石,黄春晓,杨斌,等.自适应加权Savitzky-Golay滤波重构MODIS植被指数时间序列[J].测绘科学,2020,45(4):105-116.HU Shunshi,HUANG Chunxiao,YANG Bin,et al.Reconstruction of MODIS vegetation index time series by adaptive weighted Savitzky-Golay filter[J].Science of Surveying and Mapping,2020,45(4):105-116
参考文献 26
Liu Y P,Dang B,Li Y,et al.Applications of Savitzky-Golay filter for seismic random noise reduction[J].Acta Geophysica,2016,64(1):101-124
参考文献 27
马中民,张双成,刘奇,等.普适型GPS用于黄河盐锅峡水位监测分析[J].南京信息工程大学学报(自然科学版),2021,13(2):187-193.MA Zhongmin,ZHANG Shuangcheng,LIU Qi,et al.Monitoring water level change of the Yellow River by universal GPS receivers[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2021,13(2):187-193
参考文献 28
Gorry P A.General least-squares smoothing and differentiation by the convolution(Savitzky-Golay)method[J].Analytical Chemistry,1990,62(6):570-573
目录contents

    摘要

    利用全球导航卫星系统反射(GNSS-R)信号进行潮位反演时,需要对多路径频率进行估计.常规反演方法仅对主频率估计,因此存在数据利用率低、反演结果时间分辨率不足的问题.为解决该问题,本文利用Savitzky-Golay(SG)平滑滤波优化GNSS-R潮位反演.首先,利用Lomb-Scargle周期图(LSP)法提取信号功率的前4个频率f1~f4,并反演它们对应的潮位值;然后,利用SG平滑滤波方法提取最佳反演结果;最后,以法国BRST站和MAYG站30 d的数据验证算法的有效性.通过与LSP法和窗口LSP(WINLSP)法进行对比,结果表明:相比LSP法,滤波后BRST站和MAYG站的日均反演值数量分别提升34.3%和19.6%,反演值的最大时间间隔分别减少43.2%和29.4%,RMSE值变化不大;相比WINLSP法,滤波后BRST站和MAYG站的日均反演值数量分别提升24.2%和45.9%,反演值最大时间间隔分别减少25.4%和28.6%,RMSE值均减少了7 cm.总体而言,该方法能够在保证精度的前提下提高反演结果的数量,同时提高了数据的利用率和潮位反演的时间分辨率.

    Abstract

    Multipath frequencies need to be estimated for tide level inversion from Global Navigation Satellite System Reflectometry (GNSS-R) signals.However,conventional inversion methods only estimate principal frequency,which results in low data utilization and insufficient temporal resolution of the inversion results.Here,we use the Savitzky-Golay (SG) smoothing filtering to optimize the GNSS-R tide level inversion.First,the Lomb-Scargle Periodogram (LSP) is used to extract the first four frequencies (f1-f4) of signal power,which are then inverted for their corresponding tide level values.Then the SG smoothing filtering is used to extract the best inversion results.Finally,the 30-day data from BRST and MAYG stations in France are used to verify the effectiveness of the approach.The results show that,compared with LSP method,the proposed approach increases the number of daily average inversion values by 34.3% and 19.6%,and reduces the maximum time interval of inversion values by 43.2% and 29.4%,for BRST station and MAYG station,respectively;compared with window LSP (WINLSP) method,the proposed approach increases the number of daily average inversion values of BRST station and MAYG station by 24.2% and 45.9%,decreases the maximum time interval of inversion values by 25.4% and 28.6%,respectively,and reduces the RMSE by 7 cm for both stations.It can be concluded that this method increases the number of inversion results,raises the data utilization and improves the temporal resolution of tide level inversion besides adequate accuracy.

  • 0 引言

  • 全球导航卫星系统(Global Navigation Satellite System,GNSS)可以为用户提供全天候高精度的导航、定位、授时信息.随着GNSS的快速发展,有学者发现GNSS反射信号中蕴含着地物反射表面信息和地球物理参数,由此衍生出一种新的测量技术,即GNSS反射测量技术(GNSS-R)[1].GNSS-R广泛应用于海面风速和风场、海冰厚度、土壤湿度、积雪厚度等参数的探测[2-7]

  • 1993年,欧洲航天局(ESA,简称欧空局)提出利用GNSS反射信号进行海面高度测量[8-10],GNSS-R测高技术得以发展.相对于传统测高手段和雷达测高技术,GNSS-R测高技术具有监测范围广、受环境影响小、全天候、低成本的优点[11-12].文献[13]利用广泛使用的Lomb-Scargle周期图(Lomb-Scargle Periodogram,LSP)法,对GNSS信噪比(Signal-to-Noise Ratio,SNR)数据的主要多路径频率进行估计,并反演海面高度.由于潮位数据时间分辨率的高低直接影响潮位变化信息的有效性,因此在保证一定精度条件下,潮位数据时间分辨率越高,潮位分析和海平面的监测精度越高,效果越好.但是基于LSP方法的潮位反演在一段SNR序列中通常只能得到一个时刻的潮位值,进行粗差后会出现反演点缺失、难以刻画潮位起伏的缺点.结合GNSS多模多频的优势,文献[14]利用GPS系统和GLONASS系统L1和L2频段信号进行潮位反演,证明GLONASS系统也可以实现潮位反演.文献[15]利用BDS系统的SNR数据,结合相位组合方法估计海潮位,通过多源数据结合提升反演结果的质量.文献[16]提出一种多模多频数据联测的方法,通过提升观测数据量来提高反演值数量.文献[17-18]利用最小二乘方法进行多系统联合潮位反演,提高了反演值数量.此外,文献[19-20]利用小波分析方法提取SNR序列瞬时频率,进而得到潮位值,在精度损失较小的情况下大幅提高反演点数量和数据采样率,但因依赖LSP方法,无法单独使用.文献[21]提出一种利用最优频段潮位反演结果改正其他频段反演结果的方法,即进行LSP频谱分析时,选择距离最优频段反演潮位范围最接近的峰值反演频率,不仅能够增加反演结果数量,而且也可以提高反演结果的精度,但其结果受限于最优频段的精度.还有学者提出窗口LSP(Windows LSP,WINLSP)分析法,利用时间窗口或高度角窗口截取SNR序列,每个窗口得到1个反演值,从而提高反演结果的时间分辨率.文献[22]选择窗口长度为800个SNR数据截取SNR序列,可以将每天的潮位数量提升至80个左右.文献[23]用窗口长度为5°的高度角窗口截取SNR序列,能够在十几分钟内得到50多个潮位值.但是,如果时间窗口选取太短,将会导致截取的SNR序列不能满足频谱分析的要求; 此外,用高度角窗口截取后,虽然反演点数量增多,但会导致反演精度降低,且有些测站反演潮位的有效高度角区间较小,致使这种方法无法使用.

  • 目前,GNSS-R潮位反演的研究大多利用LSP方法对SNR数据的主要多路径频率进行估计,其结果往往会得到多个峰值.当频谱分析可靠性较高时,最高峰值往往高于次峰值很多倍[21],即峰噪比较大; 当峰噪较小时,SNR序列可能有多个主频率,最高峰值对应的频率可能未携带有效潮位信息[22],即存在较多的噪声数据.

  • Savitzky-Golay(SG)平滑滤波方法是基于最小二乘拟合的卷积方法提出的,它通过高阶多项式对滑动窗口内数据进行最小二乘拟合,用于平滑连续数据,并被广泛应用于信号平滑和数据降噪,包括雷达信号、光谱数据、地震监测数据[24-26]等数据的降噪.在提取多频潮位反演最优值的过程中,当峰噪比较小时,潮位结果存在较多噪声数据,故最优值的提取也是一个噪声去除的过程.因此,本文从多路径频率的估计入手,提出利用SG平滑滤波方法优化提取SNR序列的最优潮位反演值.首先,获取LSP频谱分析的前4个峰值; 然后,利用SG平滑滤波方法筛选最优峰值,并反演得到最优潮位反演值; 最后,采用BRST站和MAYG站30 d的数据进行验证,并与LSP、WINLSP 两种方法的反演结果进行对比,结果表明本文所提方法能够在保证精度的前提下,增加反演结果的数量,提高数据的利用率和反演结果的时间分辨率.

  • 1 GNSS-R潮位反演原理及SG平滑滤波

  • 1.1 GNSS-R潮位反演原理

  • GNSS接收机在低高度角时会接收到直射信号和反射信号合成的干涉信号[27].GNSS-R潮位反演就是根据直射信号与反射信号之间的延迟,利用信号路径与反射面之间的几何关系,由SNR数据来反演潮位值.其基本原理如图1所示.

  • 图1中,e表示卫星高度角,h表示接收机天线相位中心到水面之间的相对高度.GNSS信号经过水面发生镜面反射,反射信号与直射信号之间的路程差可以表示为δ:

  • 图1 GNSS-R潮位反演原理

  • Fig.1 GNSS-R tidal level inversion principle

  • δ=2×hsine.
    (1)
  • 由式(1)可以进一步求出其相位差φ:

  • φ=2πλδ=4πhλsine.
    (2)
  • 式中,λ表示载波波长,φ表示相位差.由式(2)看出,相位差与高度角正弦值成正比.随着卫星运动,高度角不断变化,相位差也随之发生改变.

  • 当GNSS接收机放置于水边时,接收到的干涉信号可表示为

  • LSNR2=Ac2=Ad2+Ar2+2AdArcosφ.
    (3)
  • 式中,Ac表示合成信号的幅值,Ad表示直射信号的幅值,Ar表示多路径反射信号的幅值.

  • 由式(2)和式(3)可知,当卫星位置变化时,直射信号和反射信号的相位差φ随高度角e变化,表示载波信号质量好坏的SNR数据也会随之发生变化.受多路径和天线增益的影响,在低高度角时,多路径效应加剧,导致SNR数据出现振荡现象[15].所以利用低高度角的SNR数据,能够更好地分析反射信号中的潮位信息.直射信号决定了干涉信号的整体变化趋势,即Ad远大于Ar.为了提取可用于反演地表参数的反射信号,需要使用低阶多项式去除SNR数据的趋势项.去除趋势项后的SNR残差可表示为

  • NSNR=Acos4πhλsine+φ.
    (4)
  • 式中,A表示信号振幅,φ表示相位.若以t表示sin e,以f表示2hλ,则式(4)可以化为一个标准的余弦函数:

  • NSNR=Acos(2π×f×t+φ).
    (5)
  • 式(5)中,t为非等间隔采样.使用LSP频谱分析方法SNR残差进行频谱分析[13],可以得到式(5)中的频率f.接收机天线相位中心到水面的相对高度h可由λf2求得,利用天线相位中心的实测高度减去h,便可以计算出相应坐标系下的水面高度,实现GNSS-R技术潮位反演.

  • 1.2 SG平滑滤波

  • SG平滑滤波是一种卷积滑动窗口加权平均算法,在滤除噪声时能够保证信号的形状、宽度不变,使得到的数据波形尽可能逼近原数据波形[24],广泛应用于数据平滑降噪.设一个以xi)为中心包含2M+1个数据点的窗口,构造一个p阶多项式qn)拟合该数组[28],如下:

  • q(n)=m=0p amnm,-MnM,p2M+1.
    (6)
  • 式中,a0a1,···,am为拟合系数.经过最小二乘拟合得到残差C:

  • C=n=-MM (q(n)-x(n))2=n=-MM m=0p amnm-x(n)2.
    (7)
  • 当残差C最小时,滤波效果最佳[28].首先,求得C最小时的多项式系数,得到拟合曲线; 然后,取数据中心点处的拟合值作为滤波后的值; 最后,通过移动窗口得到原数据的拟合点.本文获取LSP频谱分析的前4个峰值,即在同一时刻有4个反演值,选择反演值和拟合值差值最小的作为输出结果.

  • 2 数据处理

  • 2.1 站点介绍

  • BRST测站(48.4°N,4.5°W)位于法国西海岸的Brest海港岸边,安装的是Trimble NetR9大地测量型接收机,数据采样间隔为30 s.附近的Brest验潮站可以提供采样间隔为1 min的验潮数据.为收集来自海面的反射信号,实验中GNSS的方位角设定为130°~270°,有效高度角区间设定为5°~30°.

  • MAYG测站(12.78°S,45.26°E)位于印度洋西北方的马约特岛,安装的是Trimble NetR9大地测量型接收机和Trimble TRM59800.00天线,数据采样间隔为30 s.附近的Dzaoudzi验潮站可以提供采样间隔为1 min的验潮数据.实验中GNSS的方位角设定为20°~170°,有效高度角区间设定为5°~20°.

  • 2.2 数据处理

  • SG平滑滤波提取潮位的数据处理流程如图2所示.下面以2021年年积日第157~172天,BRST测站G1号卫星观测数据为例进行具体介绍.

  • 图2 SG平滑滤波提取潮位流程

  • Fig.2 Flow chart of tide level inversion optimized by SG smoothing filtering

  • 1)对G1号卫星观测数据进行分析,得到SNR残差序列.图3为G1号卫星2021年第160天的SNR残差序列.

  • 2)对SNR残差进行LSP频谱分析,结果如图4所示.

  • 3)提取频率值.图4中f1~f4为前4个最大频率振幅的频率值.从图4中可以发现f1f2振幅值相近,即峰噪比较小.按照目前主流方法进行分析,将会舍弃由该段SNR数据得到的反演值,导致该时段内潮位值空缺.

  • 4)首先,根据4个频率分别计算潮位高度; 然后,进行粗差剔除; 最后,利用SG平滑滤波进行最优潮位值提取.SG平滑滤波时,均选取窗口大小为5,进行二次曲线拟合,并取窗口中心点处的值作为拟合值,选择反演值和拟合值差值最小的作为输出结果.

  • 5)为了保证滤波精度,根据预先设定的阈值,对该差值进行限制.如果满足限制条件,便得到反演结果; 反之,超过限制条件,则对优化反演结果重新进行滤波.由于目前基于GNSS-R技术进行潮位反演的精度主要在分米级和厘米级,故该阈值取值范围设为0~1 m,优选为0.1~0.5 m.

  • 图5为多频反演结果与SG平滑滤波提取到的最优潮位.

  • 图3 SNR残差序列

  • Fig.3 SNR residual sequence

  • 图4 LSP频谱分析

  • Fig.4 LSP spectrum analysis

  • 图5 多频数据与SG平滑滤波优化反演值

  • Fig.5 Tidal level inversion data optimized by multi-frequency data and SG smoothing filtering

  • 图5中,h1~h4f1~f4对应的反演高度值,黑色实线为每一个窗口的二次拟合函数,黑色虚线为SG平滑滤波后提取到的潮位值连线.

  • 图6为接收机附近的Brest验潮站2017—2021年验潮数据.可以看出,BRST测站附近有效高度区间为0~8 m,区间外的值认为是误差.图5中第160天的h2被作为误差剔除,滤波后输出的潮位值为h1

  • 3 实验与结果

  • 3.1 BRST站结果分析

  • 选用BRST测站2021年年积日第152~182天(30 d)的GPS L1波段数据,分别用LSP、WINLSP,以及SG平滑滤波结合LSP、WINLSP方法反演潮位.数据处理中,WINLSP和SG-WINLSP的窗口长度设定为100个SNR数据(约50 min),步长设定为20个SNR数据.将4种方法的反演结果与验潮站实测数据进行对比,结果如图7所示.

  • 图6 验潮站数据分析

  • Fig.6 Tide station data analysis

  • 图7a中,黑色实线代表验潮站潮位值,黑色圆点代表LSP反演结果,灰色圆点为SG-LSP反演结果; 图7b中,黑色圆点代表WINLSP反演结果,灰色圆点为SG-WINLSP反演结果.可以看出,4种方法获得的潮位结果均与验潮站数据对应良好.

  • 图7 BRST站反演结果对比

  • Fig.7 Comparison of BRST station inversion results, (a) LSP and SG-LSP inversion results, and (b) WINLSP and SG-WINLSP inversion results

  • 4种方法的每日有效时段和单日数据量对比如图8所示.图8a为有效时段分布曲线,可以看出,SG-WINLSP方法反演结果的有效时段最多,其值最少为18 h,最多为23 h,平均每天可以提供20 h的潮位数据.LSP方法反演结果的有效时段最少,其值最少为6 h,最多为17 h,平均每天可以提供10 h的潮位数据.WINLSP和SG-LSP方法平均每天可以分别提供17 h和13 h潮位数据.

  • 图8b为第155天4种方法反演结果数量对比,图中横轴表示小时,纵轴表示该天内每个小时内的反演值数量.可以看出,1、2、9、22时,无有效的反射信号可用,4种方法均没有反演结果.此外,LSP方法还有11个小时没有可用值; SG-LSP方法仅在8、15、16、21时没有可用值; WINLSP方法仅在7、18时没有可用值; SG-WINLSP均有可用值.因此,利用SG平滑滤波方法能够提高反演值的数量和每日有效时段.

  • 图8 BRST站反演结果有效时段与单日数据量分布

  • Fig.8 (a) Valid time period, and (b) single day data volume distribution of BRST station inversion results

  • 4种方法都是对同一SNR弧段进行分析,当SNR质量不佳时,LSP方法无法提取到有效潮位信息.但WINLSP方法是将SNR序列分割为多个窗口后进行反演,剔除粗差后,符合要求的反演值能够被保留下来.SG-LSP和SG-WINLSP方法通过提取多频数据,在干扰较大的情况下依然能够提取SNR序列中的有效数据.为了进一步验证SG平滑滤波方法提取潮位的精度,将4种方法的反演结果与验潮站实测数据进行比较,结果如表1所示.

  • 表1 BRST站4种方法反演结果

  • Table1 BRST station results inverted by four methods

  • 从表1可以看出:LSP方法和SG-LSP方法反演结果相关系数达到了0.98,SG-LSP方法日均反演点数量达到19.30个,比LSP方法提高了34.3%,最大时间间隔达到6.63 h,比LSP方法减少了43.2%;同WINLSP方法相比,SG-WINLSP方法反演结果的精度提高了7 cm,达到0.522 2 m,相关系数达0.94,日均反演点数量提高了24.2%,达到60.03个,最大时间间隔减少了25.4%,达到3.08 h.

  • 4种方法反演结果的频率分布如图9所示,图中横轴为频谱分析提取到的频率值位次,纵轴为反演值数量.可以看出:SG-LSP方法的反演结果中f1占67%、f2占20%、f3占7%、f4占6%; SG-WINLSP方法的反演结果中f1占68%、f2占18%、f3占8%、f4占6%,且4个频率的反演值均超过了100.上述结果表明SG平滑滤波方法可以有效提取f1~f4中的潮位信息,提高了数据的利用率.

  • 图9 BRST站反演结果频率分布

  • Fig.9 Frequency distribution of BRST station inversion results

  • 为了验证不同窗口和步长对WINLSP和SG-WINLSP两种方法反演结果的影响,设置5组不同的窗口和步长进行对比,结果如表2所示.可以看出:当窗口长度一定时,不同步长的反演结果RMSE值相差不大,随着步长的减小,反演结果数量增多; 当步长一定时,随着窗口长度的减小,反演结果的RMSE值增大,反演值数量增多.这一结果表明窗口长度主要影响反演值的精度,同时会影响反演值数量,而步长主要影响反演结果的数量,对反演结果的精度影响较小.

  • 表2 不同窗口和步长的反演结果

  • Table2 Inversion results for different windows and step sizes

  • 3.2 MAYG站结果分析

  • 选择MAYG测站2022年年积日第110~140天(30 d)GPS L1波段数据进行分析,4种方法的反演结果如图10所示.这里,WINLSP和SG-WINLSP的窗口长度为80个SNR数据(约40 min),步长为10个SNR数据.

  • 图10 MAYG站反演结果对比

  • Fig.10 Comparison of MAYG station inversion results, (a) LSP and SG-LSP inversion results, and (b) WINLSP and SG-WINLSP inversion results

  • 由图10可知,4种方法的潮位反演结果与验潮站数据对应良好.

  • 4 种方法对应的每日有效时段和和单日数据量对比如图11所示.

  • 图11a为4种方法反演结果的有效时段分布曲线.可以看出:SG-WINLSP方法反演结果有效时段最多,其值最少15 h,最多20 h,平均每天可以提供18 h的潮位数据; LSP方法反演结果的有效时段最少,其值最少6 h,最多16 h,平均每天可以提供11 h的潮位数据; WINLSP和SG-LSP方法平均每天分别可以提供16 h和13 h潮位数据.图11b为第133天4种方法反演结果数量对比细节.可以看出该天的5、6、11、13、17、18、22时,由于GPS卫星无有效的反射信号可用,4种方法均没有反演结果.除此之外,LSP方法在该天中还有8个时段没有可用值; SG-LSP方法通过多频提取后,在1、2、3、14、16、21时没有可用值; WINLSP方法通过分割SNR数据,仅在2、10、21时没有可用值; SG-WINLSP均有可用值,且数据量均居首位.

  • 图11 MAYG站反演结果有效时段与单日数据量分布

  • Fig.11 (a) Valid time period, and (b) single day data volume distribution of MAYG station inversion results

  • 4 种方法的反演结果与验潮站实测数据的对比结果如表3所示

  • 表3 MAYG站4种方法反演结果

  • Table3 MAYG station results inverted by four methods

  • 从表3可以看出:同LSP方法相比,SG-LSP方法的反演精度与其相当,达到0.220 9 m,相关系数为0.96,日均反演点数量达到15.23个,提高了19.6%,最大时间间隔达到7.07 h,减少了29.4%;同WINLSP方法相比,SG-WINLSP方法的反演精度较之提高了7 cm,达到0.314 7 m,相关系数为0.92,日均反演点数量达到71.17个,提高了45.9%,最大时间间隔达到4.50 h,减少了28.6%.这一结果表明SG平滑滤波方法可在保证反演精度的情况下,提高反演结果的时间分辨率.

  • 图12为4种方法反演结果的频率分布,横轴为频谱分析提取到的频率值f1~f4,纵轴为反演值数量.可以看出:SG-LSP方法的反演结果中f1占74%、f2占13%、f3占8%、f4占5%; SG-WINLSP方法的反演结果中f1占65%、f2占19%、f3占9%,f4占7%,每个频率的反演值均超过100.表明SG平滑滤波方法可以有效提取f1~f4中的潮位信息,提高了数据的利用率.

  • 图12 MAYG站反演结果频率分布

  • Fig.12 Frequency distribution of MAYG station inversion results

  • 4 结束语

  • 本文利用SG平滑滤波提取最优潮位值,进而反演出潮位的变化情况.同时,用LSP、WINLSP 2种方法反演潮位结果作为对比,获得以下结论:

  • 1)SG平滑滤波方法能够在保证精度的前提下,提高反演结果的时间分辨率.

  • 2)在干扰因素较大的情况下,频谱分析中主频不明显,存在误差信息,SG平滑滤波方法能够提取到f1~f4携带的潮位信息,提高了数据的利用率.

  • 3)与验潮站实测值相比,对于BRST站:LSP反演结果RMSE值为0.317 9 m,日均反演值14.37个; SG-LSP反演结果RMSE值为0.321 1 m,日均反演值19.30个; WINLSP反演结果RMSE值为0.592 5 m,日均反演值48.33个; SG-WINLSP反演结果RMSE值为0.522 2 m,日均反演值60.03个; 4种方法与实测值相关系数均优于0.92.对于MAYG站:LSP反演结果RMSE值为0.218 5 m,日均反演值12.73个; SG-LSP反演结果RMSE值为0.220 9 m,日均反演值15.23个; WINLSP反演结果RMSE值为0.386 9 m,日均反演值48.77个; SG-WINLSP反演结果RMSE值为0.314 7 m,日均反演值71.17个; 4种方法与实测值相关系数均优于0.88.可以发现:相对于LSP方法,WINLSP方法虽然提高了反演值数量,但是精度也大大减小,而SG-LSP方法能够在保证精度的前提下,提高反演值数量; 相对于WINLSP,SG-WINLSP方法不仅能够提升反演值数量,还能在精度上有一定提高;BRST站和MAYG站均提高了7 cm.整体来看,MAYG站的精度优于BRST站,但是MAYG站反演值与实测值相关系数却低于BRST站,可以认为是BRST站相对于MAYG站潮位变化范围更大、振荡更加剧烈导致的.

  • 后续将进一步寻找适合潮位反演融合算法,发挥GNSS多模多频的优势,获取数量充足的SNR序列,在保证反演精度条件下,尽可能提高潮位反演值的时间分辨率.

  • 参考文献

    • [1] 宁津生,姚宜斌,张小红.全球导航卫星系统发展综述[J].导航定位学报,2013,1(1):3-8.NING Jinsheng,YAO Yibin,ZHANG Xiaohong.Review of the development of global satellite navigation system[J].Journal of Navigation and Positioning,2013,1(1):3-8

    • [2] Asgarimehr M,Wickert J,Reich S.TDS-1 GNSS reflectometry:development and validation of forward scattering winds[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(11):4534-4541

    • [3] 陈庆亮,郭业才,王强,等.北斗反射信号海风探测数据分析与检定[J].南京信息工程大学学报(自然科学版),2015,7(4):338-342.CHEN Qingliang,GUO Yecai,WANG Qiang,et al.Analysis and verification of the ocean surface wind measurement detected with Beidou reflected signals[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2015,7(4):338-342

    • [4] 金双根,张勤耘,钱晓东.全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景[J].测绘学报,2017,46(10):1389-1398.JIN Shuanggen,ZHANG Qinyun,QIAN Xiaodong.New progress and application prospects of global navigation satellite system reflectometry(GNSS+R)[J].Acta Geodaetica et Cartographica Sinica,2017,46(10):1389-1398

    • [5] 刘经南,邵连军,张训械.GNSS-R研究进展及其关键技术[J].武汉大学学报(信息科学版),2007,32(11):955-960.LIU Jingnan,SHAO Lianjun,ZHANG Xunxie.Advances in GNSS-R studies and key technologies[J].Geomatics and Information Science of Wuhan University,2007,32(11):955-960

    • [6] 梁勇,杨磊,吴秋兰,等.地表粗糙度影响下的GNSS-R土壤湿度反演仿真分析[J].武汉大学学报(信息科学版),2018,43(10):1546-1552.LIANG Yong,YANG Lei,WU Qiulan,et al.Simulation of soil roughness impact in GNSS-R soil moisture retrieval[J].Geomatics and Information Science of Wuhan University,2018,43(10):1546-1552

    • [7] 邓攀,王泽民,安家春,等.利用小波分解的GNSS-R雪厚反演改进算法[J].武汉大学学报(信息科学版),2021,46(6):863-870.DENG Pan,WANG Zemin,AN Jiachun,et al.An improved algorithm based on wavelet decomposition to retrieve snow depth using GNSS-R signals[J].Geomatics and Information Science of Wuhan University,2021,46(6):863-870

    • [8] Martin-Neira M.A passive reflectometry and interferometry system(PARIS):application to ocean altimetry[J].ESA Journal,1993,17(4):331-355

    • [9] Martin-Neira M,Colmenarejo P,Runi G,et al.Ocean altimetry using the carrier phase of GNSS reflected signals[J].Cersat Journal,2000,11(22):1-10

    • [10] Martin-Neira M,Caparrini M,Font-Rossello J,et al.The PARIS concept:an experimental demonstration of sea surface altimetry using GPS reflected signals[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(1):142-150

    • [11] Geremia-Nievinski F,Hobiger T,Haas R,et al.SNR-based GNSS reflectometry for coastal sea-level altimetry:results from the first IAG inter-comparison campaign[J].Journal of Geodesy,2020,94(8):70

    • [12] Santamaría-Gómez A,Gravelle M,Dangendorf S,et al.Uncertainty of the 20th century sea-level rise due to vertical land motion errors[J].Earth and Planetary Science Letters,2017,473:24-32

    • [13] Larson K M,Löfgren J S,Haas R.Coastal sea level measurements using a single geodetic GPS receiver[J].Advances in Space Research,2013,51(8):1301-1310

    • [14] Löfgren J S,Haas R.Sea level measurements using multi-frequency GPS and GLONASS observations[J].EURASIP Journal on Advances in Signal Processing,2014,2014(1):1-13

    • [15] Jin S G,Qian X D,Wu X.Sea level change from BeiDou navigation satellite system-reflectometry(BDS-R):first results and evaluation[J].Global and Planetary Change,2017,149:20-25

    • [16] 陈昊晟,金双根,业明达,等.利用多系统GNSS干涉反射测量估计长江巴东水位变化[J].南京信息工程大学学报(自然科学版),2021,13(6):686-692.CHEN Haosheng,JIN Shuanggen,YE Mingda,et al.Water level changes at Badong station of the Yangtze River from multi-GNSS interferometric reflectomery[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2021,13(6):686-692

    • [17] Roussel N,Ramillien G,Frappart F,et al.Sea level monitoring and sea state estimate using a single geodetic receiver[J].Remote Sensing of Environment,2015,171:261-277

    • [18] Wang X L,He X F,Zhang Q.Evaluation and combination of quad-constellation multi-GNSS multipath reflectometry applied to sea level retrieval[J].Remote Sensing of Environment,2019,231:111229

    • [19] 陈殊,何秀凤,王笑蕾,等.基于小波分析的多模多频GNSS-MR潮位反演[J].大地测量与地球动力学,2022,42(4):365-370.CHEN Shu,HE Xiufeng,WANG Xiaolei,et al.Sea level retrieval using multi-GNSS multipath reflectometry based on wavelet analysis[J].Journal of Geodesy and Geodynamics,2022,42(4):365-370

    • [20] 王杰,何秀凤,王笑蕾,等.小波分析在GNSS-IR潮位反演中的应用[J].导航定位学报,2020,8(2):82-89.WANG Jie,HE Xiufeng,WANG Xiaolei,et al.Application of wavelet analysis in tidal by GNSS-IR[J].Journal of Navigation and Positioning,2020,8(2):82-89

    • [21] 明眉,岳东杰,朱少林.基于BDS-3/GPS多频数据的GNSS-R海面高度反演方法研究[J].激光与光电子学进展,2023,60(7):75-82.MING Mei,YUE Dongjie,ZHU Shaolin.Research on GNSS-R tide height inversion method based on BDS-3/GPS multi-frequency data[J].Laser & Optoelectronics Progress,2023,60(7):75-82

    • [22] Larson K M,Ray R D,Nievinski F G,et al.The accidental tide gauge:a GPS reflection case study from Kachemak Bay,Alaska[J].IEEE Geoscience and Remote Sensing Letters,2013,10(5):1200-1204

    • [23] Wang X L,Zhang Q,Zhang S C.Water levels measured with SNR using wavelet decomposition and Lomb-Scargle periodogram[J].GPS Solutions,2018,22(1):22

    • [24] 位秀雷,刘树勇.多级奇异值分解和SG的通信雷达信号降噪方法[J].武汉理工大学学报(交通科学与工程版),2020,44(4):658-662.WEI Xiulei,LIU Shuyong.Noise reduction method of communication radar signal based on multilevel singular value decomposition and Savitzky-Golay[J].Journal of Wuhan University of Technology(Transportation Science & Engineering),2020,44(4):658-662

    • [25] 胡顺石,黄春晓,杨斌,等.自适应加权Savitzky-Golay滤波重构MODIS植被指数时间序列[J].测绘科学,2020,45(4):105-116.HU Shunshi,HUANG Chunxiao,YANG Bin,et al.Reconstruction of MODIS vegetation index time series by adaptive weighted Savitzky-Golay filter[J].Science of Surveying and Mapping,2020,45(4):105-116

    • [26] Liu Y P,Dang B,Li Y,et al.Applications of Savitzky-Golay filter for seismic random noise reduction[J].Acta Geophysica,2016,64(1):101-124

    • [27] 马中民,张双成,刘奇,等.普适型GPS用于黄河盐锅峡水位监测分析[J].南京信息工程大学学报(自然科学版),2021,13(2):187-193.MA Zhongmin,ZHANG Shuangcheng,LIU Qi,et al.Monitoring water level change of the Yellow River by universal GPS receivers[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2021,13(2):187-193

    • [28] Gorry P A.General least-squares smoothing and differentiation by the convolution(Savitzky-Golay)method[J].Analytical Chemistry,1990,62(6):570-573

  • 参考文献

    • [1] 宁津生,姚宜斌,张小红.全球导航卫星系统发展综述[J].导航定位学报,2013,1(1):3-8.NING Jinsheng,YAO Yibin,ZHANG Xiaohong.Review of the development of global satellite navigation system[J].Journal of Navigation and Positioning,2013,1(1):3-8

    • [2] Asgarimehr M,Wickert J,Reich S.TDS-1 GNSS reflectometry:development and validation of forward scattering winds[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(11):4534-4541

    • [3] 陈庆亮,郭业才,王强,等.北斗反射信号海风探测数据分析与检定[J].南京信息工程大学学报(自然科学版),2015,7(4):338-342.CHEN Qingliang,GUO Yecai,WANG Qiang,et al.Analysis and verification of the ocean surface wind measurement detected with Beidou reflected signals[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2015,7(4):338-342

    • [4] 金双根,张勤耘,钱晓东.全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景[J].测绘学报,2017,46(10):1389-1398.JIN Shuanggen,ZHANG Qinyun,QIAN Xiaodong.New progress and application prospects of global navigation satellite system reflectometry(GNSS+R)[J].Acta Geodaetica et Cartographica Sinica,2017,46(10):1389-1398

    • [5] 刘经南,邵连军,张训械.GNSS-R研究进展及其关键技术[J].武汉大学学报(信息科学版),2007,32(11):955-960.LIU Jingnan,SHAO Lianjun,ZHANG Xunxie.Advances in GNSS-R studies and key technologies[J].Geomatics and Information Science of Wuhan University,2007,32(11):955-960

    • [6] 梁勇,杨磊,吴秋兰,等.地表粗糙度影响下的GNSS-R土壤湿度反演仿真分析[J].武汉大学学报(信息科学版),2018,43(10):1546-1552.LIANG Yong,YANG Lei,WU Qiulan,et al.Simulation of soil roughness impact in GNSS-R soil moisture retrieval[J].Geomatics and Information Science of Wuhan University,2018,43(10):1546-1552

    • [7] 邓攀,王泽民,安家春,等.利用小波分解的GNSS-R雪厚反演改进算法[J].武汉大学学报(信息科学版),2021,46(6):863-870.DENG Pan,WANG Zemin,AN Jiachun,et al.An improved algorithm based on wavelet decomposition to retrieve snow depth using GNSS-R signals[J].Geomatics and Information Science of Wuhan University,2021,46(6):863-870

    • [8] Martin-Neira M.A passive reflectometry and interferometry system(PARIS):application to ocean altimetry[J].ESA Journal,1993,17(4):331-355

    • [9] Martin-Neira M,Colmenarejo P,Runi G,et al.Ocean altimetry using the carrier phase of GNSS reflected signals[J].Cersat Journal,2000,11(22):1-10

    • [10] Martin-Neira M,Caparrini M,Font-Rossello J,et al.The PARIS concept:an experimental demonstration of sea surface altimetry using GPS reflected signals[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(1):142-150

    • [11] Geremia-Nievinski F,Hobiger T,Haas R,et al.SNR-based GNSS reflectometry for coastal sea-level altimetry:results from the first IAG inter-comparison campaign[J].Journal of Geodesy,2020,94(8):70

    • [12] Santamaría-Gómez A,Gravelle M,Dangendorf S,et al.Uncertainty of the 20th century sea-level rise due to vertical land motion errors[J].Earth and Planetary Science Letters,2017,473:24-32

    • [13] Larson K M,Löfgren J S,Haas R.Coastal sea level measurements using a single geodetic GPS receiver[J].Advances in Space Research,2013,51(8):1301-1310

    • [14] Löfgren J S,Haas R.Sea level measurements using multi-frequency GPS and GLONASS observations[J].EURASIP Journal on Advances in Signal Processing,2014,2014(1):1-13

    • [15] Jin S G,Qian X D,Wu X.Sea level change from BeiDou navigation satellite system-reflectometry(BDS-R):first results and evaluation[J].Global and Planetary Change,2017,149:20-25

    • [16] 陈昊晟,金双根,业明达,等.利用多系统GNSS干涉反射测量估计长江巴东水位变化[J].南京信息工程大学学报(自然科学版),2021,13(6):686-692.CHEN Haosheng,JIN Shuanggen,YE Mingda,et al.Water level changes at Badong station of the Yangtze River from multi-GNSS interferometric reflectomery[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2021,13(6):686-692

    • [17] Roussel N,Ramillien G,Frappart F,et al.Sea level monitoring and sea state estimate using a single geodetic receiver[J].Remote Sensing of Environment,2015,171:261-277

    • [18] Wang X L,He X F,Zhang Q.Evaluation and combination of quad-constellation multi-GNSS multipath reflectometry applied to sea level retrieval[J].Remote Sensing of Environment,2019,231:111229

    • [19] 陈殊,何秀凤,王笑蕾,等.基于小波分析的多模多频GNSS-MR潮位反演[J].大地测量与地球动力学,2022,42(4):365-370.CHEN Shu,HE Xiufeng,WANG Xiaolei,et al.Sea level retrieval using multi-GNSS multipath reflectometry based on wavelet analysis[J].Journal of Geodesy and Geodynamics,2022,42(4):365-370

    • [20] 王杰,何秀凤,王笑蕾,等.小波分析在GNSS-IR潮位反演中的应用[J].导航定位学报,2020,8(2):82-89.WANG Jie,HE Xiufeng,WANG Xiaolei,et al.Application of wavelet analysis in tidal by GNSS-IR[J].Journal of Navigation and Positioning,2020,8(2):82-89

    • [21] 明眉,岳东杰,朱少林.基于BDS-3/GPS多频数据的GNSS-R海面高度反演方法研究[J].激光与光电子学进展,2023,60(7):75-82.MING Mei,YUE Dongjie,ZHU Shaolin.Research on GNSS-R tide height inversion method based on BDS-3/GPS multi-frequency data[J].Laser & Optoelectronics Progress,2023,60(7):75-82

    • [22] Larson K M,Ray R D,Nievinski F G,et al.The accidental tide gauge:a GPS reflection case study from Kachemak Bay,Alaska[J].IEEE Geoscience and Remote Sensing Letters,2013,10(5):1200-1204

    • [23] Wang X L,Zhang Q,Zhang S C.Water levels measured with SNR using wavelet decomposition and Lomb-Scargle periodogram[J].GPS Solutions,2018,22(1):22

    • [24] 位秀雷,刘树勇.多级奇异值分解和SG的通信雷达信号降噪方法[J].武汉理工大学学报(交通科学与工程版),2020,44(4):658-662.WEI Xiulei,LIU Shuyong.Noise reduction method of communication radar signal based on multilevel singular value decomposition and Savitzky-Golay[J].Journal of Wuhan University of Technology(Transportation Science & Engineering),2020,44(4):658-662

    • [25] 胡顺石,黄春晓,杨斌,等.自适应加权Savitzky-Golay滤波重构MODIS植被指数时间序列[J].测绘科学,2020,45(4):105-116.HU Shunshi,HUANG Chunxiao,YANG Bin,et al.Reconstruction of MODIS vegetation index time series by adaptive weighted Savitzky-Golay filter[J].Science of Surveying and Mapping,2020,45(4):105-116

    • [26] Liu Y P,Dang B,Li Y,et al.Applications of Savitzky-Golay filter for seismic random noise reduction[J].Acta Geophysica,2016,64(1):101-124

    • [27] 马中民,张双成,刘奇,等.普适型GPS用于黄河盐锅峡水位监测分析[J].南京信息工程大学学报(自然科学版),2021,13(2):187-193.MA Zhongmin,ZHANG Shuangcheng,LIU Qi,et al.Monitoring water level change of the Yellow River by universal GPS receivers[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2021,13(2):187-193

    • [28] Gorry P A.General least-squares smoothing and differentiation by the convolution(Savitzky-Golay)method[J].Analytical Chemistry,1990,62(6):570-573

  • 地址:江苏省南京市宁六路219号    邮编:210044

    联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

    南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司