-
0 引言
-
作为一类特殊的混杂系统,马尔可夫跳变系统常用于描述系统结构或参数因扰动而突变的动态系统,受到学者们的广泛关注[1-4],如Yan等[1]研究了具有马尔可夫跳变的随机系统的有限时间稳定性和镇定问题.传统的李雅普诺夫稳定性很难达到预期的效果,特别是对于关注快速响应和工作时间的系统,如机器人控制、通信系统、航天等领域[5-7].人们更关注系统短时间内的特性,即暂态性能,这就要求系统的状态在有限时间内不超过某一界限.张维海等[8]研究了转移概率部分信息未知的随机马尔可夫跳变系统的有限时间控制问题; Yan等[9]研究了具有马尔可夫切换的伊藤型随机系统的有限时间稳定和镇定问题,利用模态相关参数法给出了有限时间稳定的充分条件; Amato等[10]研究了线性系统的有限时间有界性,得到了保守性较小的有限时间有界性条件,但未考虑随机干扰对系统的影响.
-
在实际工程中,控制的目标不仅要保证系统的稳定性,而且要满足优异的性能,保证性能函数不超过一个界限.周红艳等[11]给出了广义网络控制系统满足二次型性能指标的状态反馈控制器设计方法; Du等[12]利用模态相关驻留时间方法研究了具有不确定项的线性切换离散系统的保性能控制问题; Liu等[13]研究了伊藤型马尔可夫跳变系统的有限时间保性能控制问题,得到了状态反馈保性能控制器的设计方法,但没有考虑脉冲扰动对系统的影响.脉冲扰动现象在许多工程系统中无法避免,是导致系统不稳定的主要原因之一[14-19].高丽君等[16]研究了具有马尔可夫切换的随机脉冲时滞系统的均方指数稳定,得到依赖脉冲上界的稳定性条件; 姚凤麒等[17]建立了一类脉冲随机系统有限时间有界性定理; 鲁成甜等[18]研究了脉冲随机神经网络的有限时间稳定性问题,考虑了反镇定型脉冲; 崔瑶等[19]研究了镇定型脉冲和反镇定型脉冲对具有时滞脉冲的线性随机时滞系统的影响.到目前为止,对于带马尔可夫跳变的脉冲随机系统的保性能控制研究成果还较少.
-
针对具有时变时滞的脉冲随机马尔可夫跳变系统,本文通过选取适宜的李雅普诺夫泛函,使用平均驻留时间等方法,设计保性能控制器,并用一个例子来验证其有效性.
-
1 系统描述
-
M>0(M≥0)表示矩阵M是正定的(半正定的); MT表示矩阵M的转置; λmax(M)和λmin(M)分别表示矩阵M的最大特征值和最小特征值; 符号*表示对称矩阵中的对称项; diag{···}表示块对角矩阵;(Ω,F,P)为完备概率空间,其中,Ω,F,P分别代表样本空间、事件代数和定义在F上的概率测度; E[·]是[·]的数学期望.
-
考虑一类具有时变时滞的脉冲随机马尔可夫跳变系统:
-
其中: 分别是系统的状态和控制输入; ,是已知的适维矩阵; 时滞τ(t)满足0≤τ(t)≤τ且(t)≤h<1,其中,τ,h是给定常数; 初始值φ(t)是定义在[t0-τ,t0]的连续函数; w(t)是定义在概率空间(Ω,F,P)上的一维维纳过程,假定其满足: 是有限状态空间S={1,2,···,N}上取值的右连马尔可夫链,其转移概率为
-
式中: .假设马尔可夫链σ(t)和维纳过程w(t)是相互独立的.设计反馈控制器
-
其中,是控制器增益.将(2)代入系统(1)中,得到如下闭环系统:
-
定义性能函数如下:
-
式中,和是适维的正定矩阵.
-
为了方便,将分别表示为Ai,Bi,Ci,Di,Ei,Fi,Ki,M1i,M2i.证明系统有限时间稳定前,将会用到下列定义和引理.
-
定义1[18] 给定正数c1,c2,T且c1<c2,若
-
则称系统(1)(u(t)≡0)是关于(c1,c2,T)有限时间均方稳定的.
-
定义2[13] 若存在一个正数Γ*和控制器(2),使得:
-
1)闭环系统(3)是有限时间稳定的,
-
2) ,
-
则称控制器(2)是系统(3)的有限时间保性能控制器,Γ*为系统(3)的一个性能上界.
-
定义3[17] 对于脉冲序列{tk}k∈N,若存在正整数N0和正数τa,使得:
-
则该脉冲序列的平均脉冲区间为τa.N(t,s)表示脉冲序列在区间(s,t]内的发生次数.
-
引理1[17] 对实数矩阵N,M=MT,R=RT,以下条件等价:
-
1) ;
-
2) ;
-
3) .
-
引理2[13] 给定正数a,b,如果g(t)满足:
-
则有
-
2 主要结果
-
在本节中,将设计保性能控制器来确保闭环系统(3)有限时间稳定.应用平均驻留时间等方法推导出开环系统(1)有限时间稳定的充分条件,结合线性矩阵不等式(LMI)等技巧给出闭环系统(3)有限时间稳定及保性能控制器存在的充分条件,最后求出性能函数的最小上界.
-
定理1 假设脉冲序列满足式(6).给定正数c1,c2,T且c1<c2,若存在正标量α,μ≥1和适维矩阵Pi>0,Qi>0,i∈S,使得:
-
其中
-
则开环系统(1)(u(t)≡0)是关于(c1,c2,T)有限时间均方稳定的.
-
证明 令σ(t)=i,i∈S,选取Lyapunov泛函:
-
对式(7)应用引理1,得到
-
通过伊藤公式,计算随机微分算子,得到
-
其中,η=[xT(t) xT(t-τ(t))].结合式(8)可得:
-
对式(14)两端从tk到t积分并取数学期望,应用引理2,得到:
-
当t=tk时,由条件(9),得到:
-
两边取期望,有
-
假设下式成立:
-
实际上,当t∈[t0,t1)时,N(t,t0)=0.由式(15)知式(17)显然成立.假设,当t∈[tk-1,tk),k∈N时,式(17)成立,即
-
特别地,,则当t∈[tk,tk+1)时,由式(15)、(16)可知:
-
由数学归纳法知,对于任意的t≥t0,式(17)成立.当t∈[t0,T]时,结合式(6)和(17),有
-
其中
-
将式(19)代入(18),得到.
-
结合(5)和(10),当时,有
-
因为,结合上式,有
-
因此,系统(1)(u(t)≡0)是关于(c1,c2,T)有限时间均方稳定的.证明完毕.
-
注1 因为α>0,μ≥1,故,由式(18)知系统(1)是李雅普诺夫不稳定的.定理1表明一个李雅普诺夫不稳定的系统可以是有限时间稳定的,因此有限时间稳定性和李雅普诺夫稳定性是两个独立的概念.
-
注2 当μ>1时,表示脉冲为扰动因素,会破坏系统的稳定性,因此干扰脉冲不允许发生得太频繁.式(10)可写为τa>(T-t0)ln μ/[ln(c2λ1)-ln(c1λ2+c1τλ3)-N0ln μ-α(T-t0)],即对平均脉冲区间的下界施加了限制.当μ=1时,文献[13]中的定理1可视作本文的特例.
-
定理2 假设脉冲序列满足式(6).给定正数c1,c2,T且c1<c2,若存在正标量α,μ≥1和适维矩阵Pi>0,Qi>0,i∈S,使式(8)—(10)及以下不等式成立:
-
其中,,则闭环系统(3)是关于(c1,c2,T)有限时间均方稳定的,控制器(2)是有限时间保性能控制器,相应的性能函数上界为
-
证明 选取Lyapunov泛函.将式(7)中的Ai替换为Ai+CiKi,结合式(13)和(20),因为M1i,M2i≥0,可得:
-
类似于定理1的证明,可证闭环系统(3)是关于(c1,c2,T)有限时间均方稳定的.将上式进行整理后,有:
-
式(22)两侧同时乘e-αt,得到:
-
注意到eαt≥1,结合式(16)、(18)和(23)可得:
-
根据式(19),得到:
-
因此,闭环系统(3)是关于(c1,c2,T)有限时间均方稳定的,控制器(2)是闭环系统(3)的有限时间保性能控制器,相应的性能上界为(21).证明完毕.
-
定理3 假设脉冲序列满足式(6).给定正数c1,c2,T且c1<c2,若存在正标量α,μ≥1和适维矩阵Xi>0,Zi>0,Yi,i∈S,使式(10)及以下不等式成立:
-
其中
-
则存在保性能控制器(2)使得闭环系统(3)关于(c1,c2,T)有限时间均方稳定,性能函数上界满足(21),控制增益为.
-
证明 令,应用引理1,式(24)等价于
-
对上式分别左乘和右乘,得到式(20).对于,因为,有以下不等式成立:
-
因此,由式(25)可得:
-
式中,.应用引理1,式(27)等价于
-
对上式左右同乘,可以得到式(8).相应地,对式(26)应用引理1,再左右同乘,可以得到式(9).
-
因此,由定理2可知,闭环系统(3)关于(c1,c2,T)有限时间均方稳定,性能函数上界满足(21).证明完毕.
-
3 数值例子
-
设马尔可夫链的状态空间为S={1,2},其转移矩阵.考虑系统(3)具有以下参数:
-
取c1=0.1,c2=10,T=2,μ=1.1025,α=1,τ(t)=0.9+0.1sin(t),有τ=1,h=0.1满足条件0≤τ(t)≤τ,(t)≤h<1.取N0=3,τa=0.22>0.212,系统的脉冲序列如图1所示.
-
图1 脉冲序列
-
Fig.1 Impulse sequence
-
使用LMI工具箱求解定理1中的式(7)—(9),得到一组可行解:
-
取初始状态x0(s)=[0.1 -0.2]T,s∈[-1,0].开环系统的均方状态轨迹如图2所示,可见开环系统(1)(u(t)≡0)是关于(0.1,10,2)有限时间均方稳定的.下面将设计保性能控制器.取N0=3,τa=0.11>0.101,求解定理3不等式(24)—(26),得到一组可行解:
-
图2 开环系统均方轨迹
-
Fig.2 Mean-square trajectory of the open system
-
得到设计保性能控制器的增益矩阵为
-
仍取x0(s)= [0.1 -0.2]T,s∈[-1,0].由图3可见,闭环系统(3)是关于(0.1,10,2)有限时间均方稳定的.性能函数(4)的最小上界为Γ*=35.9,这表明控制器u(t)=K1(t)和u(t)=K2(t)是闭环系统(3)的保性能控制器.
-
图3 闭环系统均方轨迹
-
Fig.3 Mean-square trajectory of the closed system
-
4 结论
-
本文研究了一类具有时变时滞的脉冲随机马尔可夫跳变系统的有限时间保性能控制问题.通过构建李雅普诺夫泛函,结合线性矩阵不等式等技巧,得到脉冲随机马尔可夫跳变系统有限时间稳定性及保性能控制器存在的充分条件,并给出了系统性能指标的上界.最后,通过数值例子和仿真验证了提出方法的有效性.
-
参考文献
-
[1] Yan Z G,Song Y X,Liu X P.Finite-time stability and stabilization for Itô-type stochastic Markovian jump systems with generally uncertain transition rates[J].Applied Mathematics and Computation,2018,321:512-525
-
[2] Gao J F,Zhao Z,Wang J X,et al.Event-triggered output feedback control for discrete Markov jump systems under deception attack[J].Journal of the Franklin Institute,2020,357(11):6435-6452
-
[3] 刘西奎,刘文成,李艳,等.随机时滞马尔可夫跳跃系统的有限时间H∞控制[J].山东科技大学学报(自然科学版),2022,41(4):75-84.LIU Xikui,LIU Wencheng,LI Yan,et al.Finite-time H∞ control of stochastic time-delay Markovian jump systems[J].Journal of Shandong University of Science and Technology(Natural Science),2022,41(4):75-84
-
[4] 陈海洋,刘妹琴.一类具有随机时滞的受扰马尔可夫跳变系统有限时间稳定性[J].南京信息工程大学学报(自然科学版),2017,9(4):430-436.CHEN Haiyang,LIU Meiqin.Finite-time stability for a kind of Markovian jump systems subject to random delays and external disturbances[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2017,9(4):430-436
-
[5] 马广富,于彦波,李波,等.基于积分滑模的航天器有限时间姿态容错控制[J].控制理论与应用,2017,34(8):1028-1034.MA Guangfu,YU Yanbo,LI Bo,et al.Integral-type sliding mode finite-time fault tolerant control for spacecraft attitude control[J].Control Theory & Applications,2017,34(8):1028-1034
-
[6] Li Z J,Wu H B,Yang J M,et al.A position and torque switching control method for robot collision safety[J].International Journal of Automation and Computing,2018,15(2):156-168
-
[7] 李冬柏,陈健,陈雪芹,等.带有输入死区的航天器姿态有限时间控制[J].哈尔滨工业大学学报,2018,50(4):21-27.LI Dongbai,CHEN Jian,CHEN Xueqin,et al.Finite-time attitude control of spacecrafts with input dead-zone nonlinearities[J].Journal of Harbin Institute of Technology,2018,50(4):21-27
-
[8] 张维海,刘鹤鸣.随机马尔可夫跳跃系统有限时间控制[J].控制理论与应用,2015,32(3):334-340.ZHANG Weihai,LIU Heming.Finite-time control of stochastic Markovian jump systems[J].Control Theory & Applications,2015,32(3):334-340
-
[9] Yan Z G,Zhang W H,Zhang G S.Finite-time stability and stabilization of Itô stochastic systems with Markovian switching:mode-dependent parameter approach[J].IEEE Transactions on Automatic Control,2015,60(9):2428-2433
-
[10] Amato F,Ambrosino R,Ariola M,et al.On the finite-time boundedness of linear systems[J].Automatica,2019,107:454-466
-
[11] 周红艳,张钊,陈雪波,等.短时延广义网络控制系统的指数保性能控制[J].控制理论与应用,2023,40(1):178-184.ZHOU Hongyan,ZHANG Zhao,CHEN Xuebo,et al.Guaranteed cost control for exponential stability of singular networked control systems with short delay[J].Control Theory & Applications,2023,40(1):178-184
-
[12] Du S L,Zhao X D,Qiao J F,et al.Guaranteed cost stabilization control of discrete-time switched systems[J].IET Control Theory & Applications,2021,15(3):404-415
-
[13] Liu X K,Li W C,Yao C X,et al.Finite-time guaranteed cost control for Markovian jump systems with time-varying delays[J].Mathematics,2022,10(12):2028
-
[14] Peng D X,Li X D,Rakkiyappan R,et al.Stabilization of stochastic delayed systems:event-triggered impulsive control[J].Applied Mathematics and Computation,2021,401:126054
-
[15] Hu W.Stability of impulsive stochastic delay systems with Markovian switched delay effects[J].Mathematics,2022,10(7):1110
-
[16] 高丽君,王丹丹.具有马尔可夫切换的随机脉冲时滞系统的均方指数稳定性[J].系统科学与数学,2015,35(9):1008-1017.GAO Lijun,WANG Dandan.Mean Square exponential stability of stochastic impulsive time delay systems with Markovian switching[J].Journal of Systems Science and Mathematical Sciences,2015,35(9):1008-1017
-
[17] 姚凤麒,朱行行.一类脉冲随机系统的有限时间有界性分析与H∞控制[J].控制理论与应用,2018,35(3):291-298.YAO Fengqi,ZHU Xingxing.Finite-time boundedness analysis and H-infinity control for a class of impulsive stochastic systems[J].Control Theory & Applications,2018,35(3):291-298
-
[18] 鲁成甜,喻圣,程培.具有时滞的脉冲随机神经网络的有限时间稳定性[J].控制理论与应用,2020,37(1):187-192.LU Chengtian,YU Sheng,CHENG Pei.Finite-time stability of the impulsive stochastic neural networks with delay[J].Control Theory & Applications,2020,37(1):187-192
-
[19] 崔瑶,程培,蔡婷.具有时滞脉冲的线性随机时滞系统的均方指数稳定[J].控制理论与应用,2022,39(1):83-90.CUI Yao,CHENG Pei,CAI Ting.Mean Square exponential stability of linear stochastic delay systems with delayed impulses[J].Control Theory & Applications,2022,39(1):83-90
-
摘要
本文主要研究具有时变时滞的脉冲随机马尔可夫跳变系统的有限时间保性能控制问题.通过选取模态相关的李雅普诺夫泛函,使用线性矩阵不等式(LMI)、平均驻留时间方法等技术,得到一些新的充分条件来确保系统有限时间稳定,并给出了系统的上界性能指标.基于该充分条件设计了系统的状态反馈保性能控制器.最后,利用Matlab的LMI工具箱进行数据仿真,得到相应的均方轨迹图.数值例子结果表明,得到的仿真结果和理论结果一致,验证了文中理论的有效性.
Abstract
The finite-time guaranteed cost control problem is studied for impulsive stochastic Markov jump systems with time-varying delays.By selecting mode-dependent Lyapunov functionals,using techniques such as Linear Matrix Inequality (LMI) and average dwell time,we obtain some new sufficient conditions to ensure finite-time stability and the upper bound performance index of the system,hence design a guaranteed cost controller with state feedback.Finally,the LMI toolbox of Matlab is used for data simulation,and the corresponding mean-square trajectory plots are obtained.Numerical examples show that the obtained simulation results are consistent with the theoretical results,which verifies the effectiveness of the proposed approach.