en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

谢东升(共同一作),男,博士,教授级高级工程师,主要从事煤化工、C1化工以及项目管理工作.xieds.snei@sinopec.com;

宋洋(共同一作),女,博士,讲师,主要从事电化学研究.songyang@njxzc.edu.cn

中图分类号:O69

文献标识码:A

DOI:10.13878/j.cnki.jnuist.20221124001

参考文献 1
Zhang X,Xia Y,Xia C,et al.Insights into practical-scale electrochemical H2O2 synthesis[J].Trends in Chemistry,2020,2(10):942-953
参考文献 2
Sun Y Y,Han L,Strasser P.A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production[J].Chemical Society Reviews,2020,49(18):6605-6631
参考文献 3
Tang C,Jiao Y,Shi B Y,et al.Coordination tunes selectivity:two-electron oxygen reduction on high-loading molybdenum single-atom catalysts[J].Angewandte Chemie International Edition,2020,59(23):9171-9176
参考文献 4
Jiang K,Zhao J J,Wang H T.Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide[J].Advanced Functional Materials,2020,30(35):2003321
参考文献 5
Perry S C,Pangotra D,Vieira L,et al.Electrochemical synthesis of hydrogen peroxide from water and oxygen[J].Nature Reviews Chemistry,2019,3(7):442-458
参考文献 6
Hage R,Lienke A.Applications of transition-metal catalysts to textile and wood-pulp bleaching[J].Angewandte Chemie International Edition,2006,45(2):206-222
参考文献 7
Lane B S,Burgess K.Metal-catalyzed epoxidations of alkenes with hydrogen peroxide[J].Chemical Reviews,2003,103(7):2457-2473
参考文献 8
Ciriminna R,Albanese L,Meneguzzo F,et al.Hydrogen peroxide:a key chemical for today's sustainable development[J].ChemSusChem,2016,9(24):3374-3381
参考文献 9
Riedl H J.Production of hydrogen peroxide:US,2158525 [P].1939
参考文献 10
Yuan Q L,Zhao J J,Mok D H,et al.Electrochemical hydrogen peroxide synthesis from selective oxygen reduction over metal selenide catalysts[J].Nano Letters,2022,22(3):1257-1264
参考文献 11
Lewis R J,Hutchings G J.Recent advances in the direct synthesis of H2O2[J].ChemCatChem,2019,11(1):298-308
参考文献 12
Lunsford J H.The direct formation of H2O2 from H2 and O2 over palladium catalysts[J].Journal of Catalysis,2003,216(1/2):455-460
参考文献 13
Dissanayake D P,Lunsford J H.Evidence for the role of colloidal palladium in the catalytic formation of H2O2 from H2 and O2[J].Journal of Catalysis,2002,206(2):173-176
参考文献 14
Edwards J K,Solsona B,Edwin N N,et al.Switching off hydrogen peroxide hydrogenation in the direct synthesis process[J].Science,2009,323(5917):1037-1041
参考文献 15
Yang S,Verdaguer-Casadevall A,Arnarson L,et al.Toward the decentralized electrochemical production of H2O2:a focus on the catalysis[J].ACS Catalysis,2018,8(5):4064-4081
参考文献 16
Jung E,Shin H,Lee B H,et al.Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production[J].Nature Materials,2020,19(4):436-442
参考文献 17
Kulkarni A,Siahrostami S,Patel A,et al.Understanding catalytic activity trends in the oxygen reduction reaction[J].Chemical Reviews,2018,118(5):2302-2312
参考文献 18
Peterson A A,Abild-Pedersen F,Studt F,et al.How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels[J].Energy & Environmental Science,2010,3(9):1311-1315
参考文献 19
Adzic R R,Tripkovic A V,Markovic N M,et al.Structural effects in electrocatalysis oxidation of formic acid and oxygen reduction on single-crystal electrodes and the effects of foreign metal adatoms[J].Journal of Electroanalytical Chemistry,1983,150(1/2):79-88
参考文献 20
Pizzutilo E,Freakley S J,Cherevko S,et al.Gold-palladium bimetallic catalyst stability:consequences for hydrogen peroxide selectivity[J].ACS Catalysis,2017,7(9):5699-5705
参考文献 21
Jirkovský J S,Panas I,Ahlberg E,et al.Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production[J].Journal of the American Chemical Society,2011,133(48):19432-19441
参考文献 22
Verdaguer-Casadevall A,Deiana D,Karamad M,et al.Trends in the electrochemical synthesis of H2O2:enhancing activity and selectivity by electrocatalytic site engineering[J].Nano Letters,2014,14(3):1603-1608
参考文献 23
Lu Y Z,Jiang Y Y,Gao X H,et al.Charge state-dependent catalytic activity of [Au25(SC12H25)18]nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide[J].Chemical Communications,2014,50(62):8464-8467
参考文献 24
Choi C H,Kim M,Kwon H C,et al.Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst[J].Nature Communications,2016,7(1):1-9
参考文献 25
Calle-Vallejo F,Tymoczko J,Colic V,et al.Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors[J].Science,2015,350(6257):185-189
参考文献 26
Song X Z,Li N,Zhang H,et al.Promotion of hydrogen peroxide production on graphene-supported atomically dispersed platinum:effects of size on oxygen reduction reaction pathway[J].Journal of Power Sources,2019,435:226771
参考文献 27
Hu C G,Dai L M.Carbon-based metal-free catalysts for electrocatalysis beyond the ORR[J].Angewandte Chemie International Edition,2016,55(39):11736-11758
参考文献 28
Pegis M L,Wise C F,Martin D J,et al.Oxygen reduction by homogeneous molecular catalysts and electrocatalysts[J].Chemical Reviews,2018,118(5):2340-2391
参考文献 29
Montemore M M,van Spronsen M A,Madix R J,et al.O2 activation by metal surfaces:implications for bonding and reactivity on heterogeneous catalysts[J].Chemical Reviews,2018,118(5):2816-2862
参考文献 30
Yang S,Kim J,Tak Y J,et al.Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions[J].Angewandte Chemie International Edition,2016,55(6):2058-2062
参考文献 31
Choi C H,Kwon H C,Yook S,et al.Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface[J].The Journal of Physical Chemistry C,2014,118(51):30063-30070
参考文献 32
Gawande M B,Fornasiero P,Zbo ř il R.Carbon-based single-atom catalysts for advanced applications[J].ACS Catalysis,2020,10(3):2231-2259
参考文献 33
Jiang K,Back S,Akey A J,et al.Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination[J].Nature Communications,2019,10(1):1-11
参考文献 34
Gao J J,Yang H B,Huang X,et al.Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst[J].Chem,2020,6(3):658-674
参考文献 35
Gan J,Luo W,Chen W Y,et al.Mechanistic understanding of size-dependent oxygen reduction activity and selectivity over Pt/CNT nanocatalysts[J].European Journal of Inorganic Chemistry,2019,2019(27):3210-3217
参考文献 36
Li F,Han G F,Noh H J,et al.Boosting oxygen reduction catalysis with abundant copper single atom active sites[J].Energy & Environmental Science,2018,11(8):2263-2269
参考文献 37
Hammer B,Nørskov J K.Theoretical surface science and catalysis—calculations and concepts[J].Advances in Catalysis,2000,45:71-129
参考文献 38
Chung H T,Cullen D A,Higgins D,et al.Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst[J].Science,2017,357(6350):479-484
参考文献 39
He Y H,Hwang S,Cullen D A,et al.Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs:carbon-shell confinement strategy[J].Energy & Environmental Science,2019,12(1):250-260
参考文献 40
Zitolo A,Goellner V,Armel V,et al.Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials[J].Nature Materials,2015,14(9):937-942
参考文献 41
Fei H L,Dong J C,Feng Y X,et al.General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities[J].Nature Catalysis,2018,1(1):63-72
参考文献 42
Pan Y,Liu S J,Sun K A,et al.A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site:a superior trifunctional catalyst for overall water splitting and Zn—air batteries[J].Angewandte Chemie International Edition,2018,57(28):8614-8618
参考文献 43
Li J Z,Chen M J,Cullen D A,et al.Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells[J].Nature Catalysis,2018,1(12):935-945
参考文献 44
Zhang Y W,Lucas J M,Song P,et al.Superresolution fluorescence mapping of single-nanoparticle catalysts reveals spatiotemporal variations in surface reactivity[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(29):8959-8964
参考文献 45
Wang X X,Prabhakaran V,He Y H,et al.Iron-free cathode catalysts for proton-exchange-membrane fuel cells:cobalt catalysts and the peroxide mitigation approach[J].Advanced Materials,2019,31(31):1805126
参考文献 46
Zheng Z K,Ng Y H,Wang D W,et al.Epitaxial growth of Au-Pt-Ni nanorods for direct high selectivity H2O2 production[J].Advanced Materials,2016,28(45):9949-9955
参考文献 47
Barros W R P,Wei Q L,Zhang G X,et al.Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on Printex carbon and Graphene[J].Electrochimica Acta,2015,162:263-270
参考文献 48
Xiao Y,Hong J,Wang X,et al.Revealing kinetics of two-electron oxygen reduction reaction at single-molecule level[J].Journal of the American Chemical Society,2020,142(30):13201-13209
参考文献 49
Carneiro J F,Paulo M J,Siaj M,et al.Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration[J].Journal of Catalysis,2015,332:51-61
参考文献 50
Li W,Liu J,Zhao D Y.Mesoporous materials for energy conversion and storage devices[J].Nature Reviews Materials,2016,1(6):1-17
参考文献 51
Jiang H,Gu J X,Zheng X S,et al.Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR,OER and HER[J].Energy & Environmental Science,2019,12(1):322-333
参考文献 52
Sun K,Xu W W,Lin X,et al.Electrochemical oxygen reduction to hydrogen peroxide via a two-electron transfer pathway on carbon-based single-atom catalysts[J].Advanced Materials Interfaces,2021,8(8):2001360
参考文献 53
Gong K P,Du F,Xia Z H,et al.Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J].Science,2009,323(5915):760-764
参考文献 54
Lu Z J,Bao S J,Gou Y T,et al.Nitrogen-doped reduced-graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J].RSC Advances,2013,3(12):3990-3995
参考文献 55
Leng W H,Zhu W C,Ni J,et al.Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode[J].Applied Catalysis A:General,2006,300(1):24-35
参考文献 56
Yu F K,Zhou M H,Zhou L,et al.A novel electro-Fenton process with H2O2 generation in a rotating disk reactor for organic pollutant degradation[J].Environmental Science and Technology Letters,2014,1:320-324
参考文献 57
Yamanaka I,Murayama T.Neutral H2O2 synthesis by electrolysis of water and O2[J].Angewandte Chemie International Edition,2008,47(10):1900-1902
参考文献 58
Kim H W,Ross M B,Kornienko N,et al.Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts[J].Nature Catalysis,2018,1(4):282-290
参考文献 59
Lu Z Y,Chen G X,Siahrostami S,et al.High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J].Nature Catalysis,2018,1(2):156-162
参考文献 60
Tammeveski K,Kontturi K,Nichols R J,et al.Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes[J].Journal of Electroanalytical Chemistry,2001,515(1/2):101-112
参考文献 61
Yan H,Zhao X X,Guo N,et al.Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity[J].Nature Communications,2018,9(1):1-9
参考文献 62
Siahrostami S,Villegas S J,Mostaghimi A H B,et al.A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide[J].ACS Catalysis,2020,10(14):7495-7511
参考文献 63
Wu K H,Shi W,Wang D,et al.In situ electrostatic modulation of path selectivity for the oxygen reduction reaction on Fe—N doped carbon catalyst[J].Chemistry of Materials,2017,29(11):4649-4653
参考文献 64
Lin Y M,Wu K H,Lu Q,et al.Electrocatalytic water oxidation at quinone-on-carbon:a model system study[J].Journal of the American Chemical Society,2018,140(44):14717-14724
参考文献 65
Marshall A T,Vaisson-Béthune L.Avoid the quasi-equilibrium assumption when evaluating the electrocatalytic oxygen evolution reaction mechanism by Tafel slope analysis[J].Electrochemistry Communications,2015,61:23-26
参考文献 66
Lu X Y,Wang D,Wu K H,et al.Oxygen reduction to hydrogen peroxide on oxidized nanocarbon:identification and quantification of active sites[J].Journal of Colloid and Interface Science,2020,573:376-383
参考文献 67
Chen M X,Zhu M Z,Zuo M,et al.Identification of catalytic sites for oxygen reduction in metal/nitrogen-doped carbons with encapsulated metal nanoparticles[J].Angewandte Chemie International Edition,2020,59(4):1627-1633
参考文献 68
Han G F,Li F,Zou W,et al.Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2[J].Nature Communications,2020,11(1):1-9
参考文献 69
Wu K H,Wang D,Lu X Y,et al.Highly selective hydrogen peroxide electrosynthesis on carbon:in situ interface engineering with surfactants[J].Chem,2020,6(6):1443-1458
参考文献 70
Jeon I Y,Shin Y R,Sohn G J,et al.Edge-carboxylated graphene nanosheets via ball milling[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(15):5588-5593
参考文献 71
Wohlgemuth S A,White R J,Willinger M G,et al.A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction[J].Green Chemistry,2012,14(5):1515-1523
参考文献 72
Sheng X,Daems N,Geboes B,et al.N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2[J].Applied Catalysis B:Environmental,2015,176/177:212-224
参考文献 73
Favaro M,Perini L,Agnoli S,et al.Electrochemical behavior of N and Ar implanted highly oriented pyrolytic graphite substrates and activity toward oxygen reduction reaction[J].Electrochimica Acta,2013,88:477-487
参考文献 74
Sun Y Y,Sinev I,Ju W,et al.Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts[J].ACS Catalysis,2018,8(4):2844-2856
参考文献 75
Sidik R A,Anderson A B,Subramanian N P,et al.O2 reduction on graphite and nitrogen-doped graphite:experiment and theory[J].The Journal of Physical Chemistry B,2006,110(4):1787-1793
参考文献 76
Okamoto Y.First-principles molecular dynamics simulation of O2 reduction on nitrogen-doped carbon[J].Applied Surface Science,2009,256(1):335-341
参考文献 77
Fellinger T P,Hasché F,Strasser P,et al.Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide[J].Journal of the American Chemical Society,2012,134(9):4072-4075
参考文献 78
Zhao H Y,Shen X Q,Chen Y,et al.A COOH-terminated nitrogen-doped carbon aerogel as a bulk electrode for completely selective two-electron oxygen reduction to H2O2[J].Chemical Communications,2019,55(44):6173-6176
参考文献 79
Li L Q,Tang C,Zheng Y,et al.Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon[J].Advanced Energy Materials,2020,10(21):2000789
参考文献 80
Guo D H,Shibuya R,Akiba C,et al.Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J].Science,2016,351(6271):361-365
参考文献 81
Bu Y F,Nam G,Kim S,et al.A tailored bifunctional electrocatalyst:boosting oxygen reduction/evolution catalysis via electron transfer between N-doped graphene and perovskite oxides[J].Small,2018,14(48):e1802767
参考文献 82
Kim H W,Bukas V J,Park H,et al.Mechanisms of two-electron and four-electron electrochemical oxygen reduction reactions at nitrogen-doped reduced graphene oxide[J].ACS Catalysis,2020,10(1):852-863
参考文献 83
Xia W,Mahmood A,Liang Z B,et al.Earth-abundant nanomaterials for oxygen reduction[J].Angewandte Chemie International Edition,2016,55(8):2650-2676
参考文献 84
Nie Y,Li L,Wei Z D.Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J].Chemical Society Reviews,2015,44(8):2168-2201
参考文献 85
Higgins D,Zamani P,Yu A P,et al.The application of graphene and its composites in oxygen reduction electrocatalysis:a perspective and review of recent progress[J].Energy & Environmental Science,2016,9(2):357-390
参考文献 86
Jeon I Y,Zhang S,Zhang L P,et al.Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction:the electron spin effect[J].Advanced Materials,2013,25(42):6138-6145
参考文献 87
Ji L W,Rao M M,Zheng H M,et al.Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J].Journal of the American Chemical Society,2011,133(46):18522-18525
参考文献 88
Paraknowitsch J P,Thomas A.Doping carbons beyond nitrogen:an overview of advanced heteroatom doped carbons with boron,sulphur and phosphorus for energy applications[J].Energy & Environmental Science,2013,6(10):2839-2855
参考文献 89
Liu G,Niu P,Yin L C,et al.α-sulfur crystals as a visible-light-active photocatalyst[J].Journal of the American Chemical Society,2012,134(22):9070-9073
参考文献 90
He W H,Wang Y,Jiang C H,et al.Structural effects of a carbon matrix in non-precious metal O2-reduction electrocatalysts[J].Chemical Society Reviews,2016,45(9):2396-2409
参考文献 91
Zhu C Z,Li H,Fu S F,et al.Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures[J].Chemical Society Reviews,2016,45(3):517-531
参考文献 92
Chen G Y,Liu J W,Li Q Q,et al.A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts[J].Nano Research,2019,12(10):2614-2622
参考文献 93
Zhao K,Su Y,Quan X,et al.Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon[J].Journal of Catalysis,2018,357:118-126
参考文献 94
Zhang D Y,Liu T C,Yin K,et al.Selective H2O2 production on N-doped porous carbon from direct carbonization of metal organic frameworks for electro-Fenton mineralization of antibiotics[J].Chemical Engineering Journal,2020,383:123184
参考文献 95
Ju Z C,Zhang S,Xing Z,et al.Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties[J].ACS Applied Materials & Interfaces,2016,8(32):20682-20690
参考文献 96
Li F,Han G F,Bu Y F,et al.Revealing isolated M—N3C1 active sites for efficient collaborative oxygen reduction catalysis[J].Angewandte Chemie International Edition,2020,59(52):23678-23683
参考文献 97
Perazzolo V,Durante C,Pilot R,et al.Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide[J].Carbon,2015,95:949-963
参考文献 98
Ma G Q,Huang F F,Wen Z Y,et al.Enhanced performance of lithium sulfur batteries with conductive polymer modified separators[J].Journal of Materials Chemistry A,2016,4(43):16968-16974
参考文献 99
Pang Q,Liang X,Kwok C Y,et al.Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J].Nature Energy,2016,1(9):1-11
参考文献 100
Favaro M,Ferrighi L,Fazio G,et al.Single and multiple doping in graphene quantum dots:unraveling the origin of selectivity in the oxygen reduction reaction[J].ACS Catalysis,2015,5(1):129-144
参考文献 101
Zhang J L,Chen G L,Zhang Q,et al.Self-assembly synthesis of N-doped carbon aerogels for supercapacitor and electrocatalytic oxygen reduction[J].ACS Applied Materials & Interfaces,2015,7(23):12760-12766
参考文献 102
Roldán L,Truong-Phuoc L,Ansón-Casaos A,et al.Mesoporous carbon doped with N,S heteroatoms prepared by one-pot auto-assembly of molecular precursor for electrocatalytic hydrogen peroxide synthesis[J].Catalysis Today,2018,301:2-10
参考文献 103
Chen S C,Chen Z H,Siahrostami S,et al.Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide[J].Journal of the American Chemical Society,2018,140(25):7851-7859
参考文献 104
Jia N,Yang T,Shi S F,et al.N,F-codoped carbon nanocages:an efficient electrocatalyst for hydrogen peroxide electroproduction in alkaline and acidic solutions[J].ACS Sustainable Chemistry & Engineering,2020,8(7):2883-2891
参考文献 105
Martins J D R,Chacham H.Disorder and segregation in B-C-N graphene-type layers and nanotubes:tuning the band gap[J].ACS Nano,2011,5(1):385-393
参考文献 106
Liu H Y,Hou Z F,Hu C H,et al.Electronic and magnetic properties of fluorinated graphene with different coverage of fluorine[J].The Journal of Physical Chemistry C,2012,116(34):18193-18201
参考文献 107
You B,Jiang N,Sheng M L,et al.Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction[J].ACS Catalysis,2015,5(12):7068-7076
参考文献 108
Liu Y M,Zhang Y J,Cheng K,et al.Selective electrochemical reduction of carbon dioxide to ethanol on a boron-and nitrogen-Co-doped nanodiamond[J].Angewandte Chemie International Edition,2017,56(49):15607-15611
参考文献 109
Jiang Y Y,Ni P J,Chen C X,et al.Selective electrochemical H2O2 production through two-electron oxygen electrochemistry[J].Advanced Energy Materials,2018,8(31):1801909
参考文献 110
Ren S X,Joulié D,Salvatore D,et al.Molecular electrocatalysts can mediate fast,selective CO2 reduction in a flow cell[J].Science,2019,365(6451):367-369
参考文献 111
Weekes D M,Salvatore D A,Reyes A,et al.Electrolytic CO2 reduction in a flow cell[J].Accounts of Chemical Research,2018,51(4):910-918
参考文献 112
Burdyny T,Smith W A.CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions[J].Energy & Environmental Science,2019,12(5):1442-1453
参考文献 113
Otsuka K,Yamanaka I.One step synthesis of hydrogen peroxide through fuel cell reaction[J].Electrochimica Acta,1990,35(2):319-322
参考文献 114
Li W,Bonakdarpour A,Gyenge E,et al.Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell[J].ChemSusChem,2013,6(11):2137-2143
参考文献 115
Murayama T,Yamanaka I.Electrosynthesis of neutral H2O2 solution from O2 and water at a mixed carbon cathode using an exposed solid-polymer-electrolyte electrolysis cell[J].The Journal of Physical Chemistry C,2011,115(13):5792-5799
参考文献 116
Xia C,Xia Y,Zhu P,et al.Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte[J].Science,2019,366(6462):226-231
参考文献 117
Coutinho F M B,Rezende S M,Soares B G.Characterization of sulfonated poly(styrene-divinylbenzene)and poly(divinylbenzene)and its application as catalysts in esterification reaction[J].Journal of Applied Polymer Science,2006,102(4):3616-3627
参考文献 118
Song Z Q,Xu C L,Sheng X,et al.Utilization of peroxide reduction reaction at air-liquid-solid joint interfaces for reliable sensing system construction[J].Advanced Materials,2018,30(6):1701473
参考文献 119
Zhang Q Z,Zhou M H,Ren G B,et al.Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion[J].Nature Communications,2020,11(1):1731
参考文献 120
Jung E,Shin H,Hooch Antink W,et al.Recent advances in electrochemical oxygen reduction to H2O2:catalyst and cell design[J].ACS Energy Letters,2020,5(6):1881-1892
参考文献 121
Shen R A,Chen W X,Peng Q,et al.High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution[J].Chem,2019,5(8):2099-2110
参考文献 122
Pang Y Y,Wang K,Xie H,et al.Mesoporous carbon hollow spheres as efficient electrocatalysts for oxygen reduction to hydrogen peroxide in neutral electrolytes[J].ACS Catalysis,2020,10(14):7434-7442
参考文献 123
Thiyagarajan N,Janmanchi D,Tsai Y F,et al.A carbon electrode functionalized by a tricopper cluster complex:overcoming overpotential and production of hydrogen peroxide in the oxygen reduction reaction[J].Angewandte Chemie International Edition,2018,57(14):3612-3616
参考文献 124
Wang K,Huang J H,Chen H X,et al.Recent advances in electrochemical 2e oxygen reduction reaction for on-site hydrogen peroxide production and beyond[J].Chemical Communications,2020,56(81):12109-12121
参考文献 125
Chen Y,Bu Y F,Zhang Y X,et al.A highly efficient and robust nanofiber cathode for solid oxide fuel cells[J].Advanced Energy Materials,2017,7(6):1601890
参考文献 126
Bu Y F,Kim S,Kwon O,et al.A composite catalyst based on perovskites for overall water splitting in alkaline conditions[J].ChemElectroChem,2019,6(5):1520-1524
参考文献 127
Zhou W J,Jia J,Lu J,et al.Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction[J].Nano Energy,2016,28:29-43
参考文献 128
Trzes'niewski B J,Diaz-Morales O,Vermaas D A,et al.In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts:the effect of pH on electrochemical activity[J].Journal of the American Chemical Society,2015,137(48):15112-15121
目录contents

    摘要

    过氧化氢(H2O2)是一种环境友好的高效氧化剂,被广泛应用于医疗、半导体芯片等行业.利用氧还原法(ORR)电化学合成过氧化氢替代传统蒽醌法极具潜力.为了实现这一工艺的商业化,开发具有高活性、高选择性和长期稳定性的2e-ORR电催化剂迫在眉睫.本文系统地介绍了目前已有金属与非金属类催化剂的研究历程,特别强调表面基团调控策略,并解析了其对还原过程中间体键位结合强度及电子转移路径的影响.重点阐述电子和几何效应、配位杂原子掺杂和非金属基材料活性位点等关键问题,突出了适当的介观结构工程和动力学策略可进一步优化现有催化剂的催化活性和H2O2选择性.最后,指出了非金属催化剂活性中心的探索、电解质环境对催化剂的影响及较大输出功率工业设备的设计等方面的挑战,并对电催化合成过氧化氢领域的发展方向提出了展望.

    Abstract

    Hydrogen peroxide (H2O2) is an environmentally friendly and efficient oxidant,which is widely used in industries like medicine and semiconductor chip.The electrochemical synthesis of H2O2 by Oxygen Reduction Reaction (ORR) has great potential to replace traditional anthraquinone method.To commercialize this process,the development of 2e-ORR electrocatalysts with high activity,high selectivity and long-term stability is imminent.Here,we systematically present the research of currently available metal and non-metal based catalysts,with special emphasis on the control strategy of surface groups,and resolves effects on bond binding strength and electron transfer pathways of intermediates in the reduction process.We focus on key strategies such as electronic and geometric effects,coordination heteroatom doping,and active sites of nonmetal-based materials,highlighting that appropriate meso-structural engineering and kinetic strategies can further optimize the catalytic activity and H2O2 selectivity of existing catalysts.Finally,we summarize the challenges in exploring the active centers of non-metallic catalysts,the influence of electrolyte environment on catalysts and industrial equipment design with large output power,and prospect the future development in electrocatalytic synthesis of hydrogen peroxide.

  • 0 引言

  • 过氧化氢(H2O2)是一种高效、绿色氧化剂,广泛应用于医药、化工、环保及纺织等行业.此外,过氧化氢可以作为晶圆清洁剂和制环氧丙烷(HPPO)工艺的环氧化试剂,在半导体行业迅速发展及全球公共卫生安全等问题频发的背景下,需求量急剧增长[1-3].据报道,2015年全球H2O2产能已达550万t,预计2022年可达650万t[4],而现有的生产规模仍不能满足未来需求[5-8]

  • 传统工业大多采用间接能耗大、能源密集型的蒽醌法生产H2O2,由Riedl[9]于1939年首次开发.该工艺需要使用昂贵的钯催化剂,通过蒽醌的连续氢化和氧化制备H2O2.然而,该方法存在诸多缺陷,例如,同时使用氢气和氧气导致该工艺在气体运输和储存方面存在安全隐患,并且需要额外的蒸馏提纯和分离步骤保证其质量分数达70%,以降低运输成本[10-11].因此,开发低成本、高效及分散式生产工艺,成为研究热点.近年来,使用氢气(H2)和氧气(O2)的分布式生产H2O2工艺成为焦点,其使用的钯-锡催化剂对H2O2的催化选择性高于95%[12-14].但在一定浓度下,H2和O2混合易燃易爆,H2需要大量的其他稳定气体(如N2、CO2)进行稀释后才可以使用,因此该工艺不适合大规模商用[15]

  • 研究发现,电催化氧还原(ORR)生产H2O2极具商用价值,如图1a所示.ORR活性电催化剂主要应用在需要高效的4e-传输机制的燃料电池,而研究人员发现,开发具有2e-传输机制的ORR催化剂生成H2O2的过程成本低且能耗小.在酸性水溶液中,4e-和2e-ORR的两种途径分别为

  • 4e-ORR:O2+4H++4e-2H2O,E0=1.23VRHE
    (1)
  • 2e-ORR:O2+2H++2e-H2O2,E0=0.70VRHE,
    (2)
  • *+O2+H++e-OOH*,
    (2a)
  • OOH*+H++e-H2O2+*.
    (2b)
  • E0是根据反应的自由能计算出的标准平衡电位,将其转化为相对可逆氢电极电位(VRHE).为使反应热力学不受pH的影响,通常在300 K下通过式(3)转换:

  • E(VS,RHE)=ERef+0.059×pH+Etest ,
    (3)
  • 在碱性溶液中,质子从水中获得,则两个反应变为

  • 4e-ORR:O2+2H2O+4e-4OH-,E0=1.23VRHE
    (4)
  • 2e-ORR:O2+2H2O+2e-H2O+2OH-,E0=0.76VRHE,
    (5)
  • O2+H2O+2e-HO2-+OH-,E0=0.76VRHE.
    (6)
  • 式(6)是pH大于11.7时反应的变化,对于2e-途径的ORR来说(式(2)、(5)和(6)),这种变化的关键是对OOH*物种的结合强度[16]

  • Kulkarni等[17]和Peterson 等[18]使用含氧物种的吸附能ΔGOOH*或ΔGOH*预测了氧还原反应的结合能强弱(图1b).在火山图中,对OOH*的结合强度决定了反应路径向火山顶峰左(4e-途径形成水)或右(2e-途径形成过氧化氢)的偏移,从而解释了4e-和2e-的竞争反应.峰值左侧表示较强的OH*结合点,OH*形成H2O的自由能减小,表示4e-ORR的选择性大于2e-.在火山峰的顶端,H2O2和H2O的形成都有很高的活性,表明4e-和2e-氧还原反应同时发生.而从两电子火山峰向右移动,两图相互重叠,无论是通过OOH*的化学解离还是电化学还原,都较难打破O—O键,增加了H2O2选择性,但也同时减弱了O2对OOH*的活化.

  • 由于选择性地生成H2O2需要调整氧还原反应的反应路径,因此催化剂的选择性和反应活性成为筛选的关键.Adzic等[19]首次在Au(111)和Au(110)的表面观察到了氧还原反应通过两电子途径发生.此后研究人员开始关注其他金属材料电子转移路径的调整策略,以寻求通过平衡OOH*的结合能力和催化活性,获得同时提高H2O2选择性和产率的理想催化剂.例如一系列贵金属及其合金(Au-Pd[20-21]、Pd-Hg[22]和Au[23])被证明具有较低的过电位和较高的H2O2选择性(>98%).目前,铂族金属材料(PGM)被认为是最先进的ORR催化剂.通过一系列分散铂族催化剂反应位点的调整策略,使反应途径发生了从四电子到两电子的转变,包括现场隔离形成单原子、表面涂覆非晶态碳层和制造包覆壳结构等方法.但是,贵金属的稀缺性导致其原料成本较高,阻碍其大规模商用和工业替代的工艺开发.最近,地球储量较为丰富的碳基材料成为研究热点,其具有灵活的精细结构及优异的电化学稳定性等特点,被认为最有潜力替代贵金属催化剂[24-26].在早期对2e-ORR过程的研究中,原始催化剂的电子结构对反应中间产物(OOH*)解吸能力不理想,导致对H2O2的选择性较低.为弥补这一点,有很多研究采用界面工程和动力学的手段优化催化剂表面官能团,促使生成的过氧化物及时从表面脱离,避免被进一步还原.

  • 图1(a)2015—2019年对2e-ORR和4e-ORR研究报道数量趋势图(以2015年为基准);(b)理论计算ORR过程火山图,使用OH*或OOH*的结合能作为描述的路径,产物为H2O(蓝色)和H2O2(红色)[16]

  • Fig.1 (a) Trend charts of the number of published reports on 2e--ORR and 4e--ORR in recent years; (b) volcano plot for theoretical calculation of the ORR process, using the binding energy of OH* or OOH* as the described path, and the products are H2O (blue) and H2O2 (red) [16]

  • 鉴于此,本文阶段性综述了4e-ORR催化剂通过结构调节与掺杂等方法使反应过程转变为2e-路径的调整策略,这些策略的报道有助于进一步开发低成本、高选择性的先进催化材料,以实现高效生产H2O2.最后,从高效电催化剂的合理设计、反应工程、电化学反应器的设计等方面阐述了电化学合成H2O2未来发展面临的主要挑战、机遇及其潜在的应用前景.

  • 1 金属-碳基电催化剂

  • 1.1 几何效应-碳偶联单原子催化剂

  • 单原子催化剂(SACs)由于其打破传统贵金属尺度效应关系,具备同时获得高活性和H2O2高选择性的特点,成为近期研究热点.氧的吸附存在“端对吸附”(O2分子为垂直取向)和“侧对吸附”(O2分子为平行取向),单原子催化剂的优异特性在于活性中心被原子隔离,在这种结构下O2在催化剂表面呈端对型(图2a),导致了O—O键反应势垒增大,O—O键断裂难度增加,进而使SACs易于通过2e-ORR途径产生更多的H2O2[27-32]

  • 研究表明,单原子金属的负载量和粒子间距是影响H2O2选择性的直接参数,若单个位点的金属催化剂纳米粒子尺寸减小到一定水平或分布较稀疏,电子转移路径会向两电子方向转变,H2O2会成为O2还原的主要产物[4].而粒径较小的金属纳米颗粒对氧分子具有较低的结合能,有利于提高ORR两电子途径中OOH*的生成[33]

  • Song等[26]报道了一种石墨烯支撑的Pt单原子(质量分数为0.48 %)催化剂,在0.8 VRHE下电流密度约为3.10 A·mg-1,为商用Pt/C催化剂的57倍.他们发现平均大小为1.02~0.02 nm的单个Pt位点都可能成为独立的活性位点,并且进一步研究发现ORR反应路径与Pt物种的粒径大小直接相关[25-26],随着Pt尺寸减小到原子水平,没有可用的相邻位点来破坏孤立Pt原子连接的O—O键,ORR过程向两个电子路径方向进行.旋转环盘电极(RRDE)结果表明分散的Pt原子对H2O2选择性高达95%.除此之外,提高OOH*中间体的吸附能,也是提高过氧化氢生成率的另一个有效途径.

  • 早期有研究者报道,金属-氮共修饰碳(M-N-C,M为过渡金属)的结构设计和配位调控是提高催化活性的有效策略.Gao等[34]结合密度泛函理论计算(DFT),通过对氮掺杂石墨烯(NC)中MM=Mn、Fe、Co、Ni、Cu)单原子催化剂ORR性能比对(图2c),发现M原子的d-band中心相对于费米能级从Mn向Cu的能量下移[35-36],Co-SAC在U=0.7 V下具有最佳d-band中心,ΔGOOH*=3.54 eV几乎位于火山图的顶点,在0.6 V的电位下,Co-NC的电流密度达到1 mA·cm-2,具有高活性、高选择性,而对H2O2选择性也超过了90%.

  • 近日,类似卟啉配体金属中心的多项单原子催化剂M-N4M为过渡金属)-SACs被认为在氧还原反应中具有高度的活性[37-42],但其2e-ORR的反应机理存在争议[43-44].Jung等[16]合成了由掺氮石墨烯支持的Co-N4单原子催化剂,他们通过调整官能团O*使其吸附在Co-N4附近,如图2d所示,ΔGOOH*从3.9 eV增长到4.1 eV.这种由C—O—C环氧化物包裹的Co-N4,其电流密度在0.65 V下达到了2.8±0.2 mA·cm-2,在Co-NG(O)负载量约为1 mg·cm-2的情况下,H2O2产率高达418±19 mmol·g-1·h-1 [30]

  • Wang等[45]研究了包括Fe、Pd、Co和Mn等一系列过渡金属(TM)的单原子配位基序,通过浸渍还原法将TM单原子固定在碳纳米管(CNT)的空位上(图2b).研究发现在0.1 M(M指mol/L) KOH碱性条件下,Fe-CNT在0.822 V达到了起始电位并形成了0.1 mA·cm-2的电流,在RRDE测试中H2O2的选择性也达到了95%以上.他们又进一步研究了N和O对反应路径的调节机理,发现氧气在GDL电极的促进下,使得Fe-CNT-O拥有了更低的起始电位0.76 V,H2O2的生成速率也达到了43 mA·cm-2.最后通过密度泛函理论(DFT)计算证明发现,反应的两种产物H2O2(2e-)和H2O(4e-)路径分别由M—C—O基序中C和Fe活性位点控制.

  • 1.2 协同效应-碳偶联金属氧化物催化剂

  • 除了单个金属原子形成的纳米颗粒可以改良碳基材料的催化活性之外,过渡金属氧化物(MnO2、Fe3O4等)作为ORR催化剂研究最广泛的化合物之一,因为其易开发、含量丰富等特点,常常与高导电的碳载体形成复合材料,用于提高ORR性能.在二电子途径的选择上,先前已有报道证明,Fe3O4催化剂在2e-ORR产生H2O2的活性位点主要位于Fe(II)表面[46].Barros等[47]以NaBH4为还原剂采用沉淀法成功合成了比表面积为450 m2·g-1的Fe3O4/石墨烯催化剂;他们发现在0.3 VSCE的情况下,该复合材料的电流密度达到1.12 mA·cm-2,高于石墨烯(0.85 mA·cm-2),体现了Fe3O4与石墨烯的协同作用,最终在0.2~0.7 VSCE的电势范围内,H2O2的电合成选择性大于60%.Xiao等[48]利用电化学和单分子荧光显微镜(EC-SMFM)的方法研究了单个Fe3O4纳米粒子2e-ORR的催化动力学(图3a),揭示了2e-ORR过程中催化活性的等速关系,认为单个纳米粒子间存在动态不均匀性并且存在补偿效应.

  • 图2(a)原始Pt/C和Pt涂覆的无定形碳层[31];(b)M-CNT催化剂的TEM表征图,HAADF-STEM中的亮点(用红色箭头标记)代表一些典型的金属单原子[33];(c)OOH*、O*和OH*M-SAC上的结合能(M=Mn、Fe、Co、Ni和Cu)和M-SAC中M原子的d-band中心[34];(d)在U=0.7 V时,SAC上2e-ORR的自由能图[34]

  • Fig.2 (a) Pristine Pt/C and Pt coated by amorphous carbon layer[31]; (b) TEM representation of M-CNT catalyst, bright dots in HAADF-STEM (marked by red arrows) represent some typical metal monatoms[33]; (c) binding energy of OOH*, O* and OH* on M-SAC (M=Mn, Fe, Co, Ni, and Cu) and d-band center of M atom in M-SAC[34]; (d) free energy diagram of 2e--ORR on SAC at U=0.7 V[34]

  • Carneiro等[49]采用水热法在还原性氧化石墨烯(rGO)薄膜上制备了Nb2O5纳米颗粒(图3b),他们将还原的石墨烯和原位生成的Nb2O5复合形成纳米复合材料并与炭黑做出对比.他们发现Nb2O5-rGO表现出更高的环电流,在酸性条件下H2O2的产率达到了85.3%且峰值电位向正方向移动,进一步证明了Nb2O5纳米颗粒(金属氧化物)与rGO片(碳材料)之间对2e-ORR具有明显的协同作用.

  • 2 非金属基催化剂两电子ORR性能的提升策略

  • 碳材料由于在环境中丰度高、分子结构可调节、电子导电性高及传输稳定性强等特点,近年来在氧还原反应(ORR)电催化中的应用研究快速增长[2750-52].在先前的研究中碳基材料已被报道是电合成过氧化氢最具前景的电催化剂,通过对碳基材料的掺杂改变对O2的化学吸附特性,能够有效地控制O—O键的断裂[53-54].在此之后,各种不同形式的纯碳材料如石墨烯、碳纳米管和富勒烯以及各种碳混合材料如氮掺杂、硫掺杂、氟化物和氧化碳等催化剂,都被相继报道对2e-途径氧还原反应生产过氧化氢具有较高的催化活性和选择性[55-57].因此对碳基材料2e-ORR催化材料在反应路径策略调整及制备方法等方面的总结,有利于从反应机理的角度,对开发出更高效的H2O2催化剂产生更多重要的启发.

  • 图3(a)Fe3O4 NPs单粒子2e-ORR过程的简图[48];(b)Nb2O5高度分散在rGO中的TEM、HRTEM和SAED图像[49]

  • Fig.3 (a) Schematic of the 2e- ORR process of Fe3O4 NPs[48]; (b) TEM, HRTEM and SAED images of Nb2O5 highly dispersed in rGO[49]

  • 2.1 活性中心缺陷的设计策略

  • 活性中心的基本特征是为特定的ORR过程提供低反应势垒和高极限电位.为了改善碳基材料的结构与活性之间的关系,引入了氧官能团(OFG)以增强两电子路径碳基催化剂的选择性.这种OFG中的氧含量与催化活性呈正相关[58-61].但在对含氧官能团催化剂活性中心位点的筛查过程中,研究者发现,由于氧官能团不可避免地将悬挂键饱和带有复杂的多组分边缘与表面选择性机制混淆,即表面羧基也可以捕捉过氧化物,使用现有分辨率的材料表征和原位拉曼光谱等手段无法区分相似的官能团,导致含氧官能团碳基材料2e-ORR催化活性中心一直存在争议[62-67]

  • 设计结构与官能团的缺陷是研究氧化碳催化活性中心的间接方法.Kim等[58]利用光谱结构表征和原位拉曼光谱等手段研究了多层氧化石墨烯(F-mrGO),结果表明sp2碳位形成的OOH-物种与环醚基团有直接关联(图4a),在碱性条件下,高浓度的环醚基碳催化剂仅在10 mV过电位下就可以产生H2O2,并且选择性接近100%.这些结果都表明sp2杂化碳附近的环醚缺陷是产生过氧化氢的活性中心,且通过控制醚基缺陷,能够调控ORR对4e-或2e-反应途径的选择.为了进一步研究官能团对碳基材料的影响,Han等[68]利用醚、羧基和醌等功能基团来修饰预活化石墨纳米片(GNP)的悬垂边缘,发现在0.75 V电位下,含喹诺酮类化合物的石墨纳米片(GNPC=O)H2O2产率高达97.8%.通过对醌、羧酸和醚环基团独立分子的氧气还原产过氧化氢(ORHP)性能比较,发现醌类化合物JH2O2(0.7 vs 0.5 mA·cm-2,在0.65 V电压下)和Tafel斜率均优于其他基团,证实了醌类化合物是ORHP的活性中心.他们通过DFT计算证明,醌基表现出很高的选择性,该理论研究也进一步验证了上述结果.

  • 为了阐明碳材料在氧化过程中可以同时产生C—O和C=O官能团的反应机理,Lu等[59]通过设计不同氧化剂(KOH/PEO)对碳纳米管表面氧化(O-CNTs)处理,结果反映了不同功能组之间存在协同效应.DFT计算结果表明,基底平面和石墨烯边缘上的C—O—C基团ORR过电位分别为0.02 V和0.06 V.而对于COOM官能团,如图4b所示,COOM edge2的位置基团最为活跃,可以产生0.06 V的过电位.可以认为与—COOH和C—O—C官能团相邻的碳原子是两电子ORR的活性中心,官能团的类型决定了活性.

  • 同样地,通过对比典型碳材料表面化学结构与其催化氧还原生成过氧化氢的反应活性之间的关联关系,Lu等[66]用不同表面氧官能团的氧化炭黑(OCB)证明了二电子氧还原反应的选择性与碳材料表面的羰基和羧基含量呈线性正相关关系,是产生过氧化氢的主要活性中心.

  • 值得注意的是,氧还原反应的选择性主要取决于过氧化氢与羧基官能团之间的结合能力.他们发现羧基的本征活性是羰基官能团的5倍以上,表面羰基(—C=O)与过氧化物有很强的结合力,若羧基活性位点上还原过程生成的H2O2不能及时地脱附,会导致H2O2选择性降低.因此,如何保证H2O2在活性中心上及时脱附是提高其选择性和产率的关键.

  • Wu等[69]按照这一思路利用界面工程的方法和反应动力学来促进炭黑(CB)电极上的2e-ORR反应,他们将阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)作用在CB表面,由于CTAB层的原位库伦作用的驱动,表面过氧化氢一旦生成就被从碳表面拉脱,而羧基在反应中起到易解吸的重要作用(图4b、c).在电位0.8 V的碱性介质中H2O2的选择性高达95%,并且证明了碳的边缘缺陷对过氧化氢的高选择性没有贡献.

  • 鉴于纳米碳/表面活性剂复合电极材料在过氧化氢电合成反应中的优异催化表现,整个反应体系能耗低、绿色、可持续、稳定性好的特点,尤其是对该体系结构-功能关系的深刻理解,这项研究工作对未来设计开发具有实际应用前景的高产率、高稳定性和低成本的电合成过氧化氢化合物体系具有重要的指导意义[66-6770]

  • 图4(a)不同电催化剂生产H2O2的质量活性对比[58];(b)不同氧化基团的理论分析[68];(c)电催化剂体系中过氧化物的选择性和潜在的窗口宽度的对比[69];(d)CNTs和O-CNTs的氧还原性能[59]

  • Fig.4 (a) Mass activity of different electrocatalysts for H2O2 production[58]; (b) theoretical analysis of different oxidation groups[68]; (c) comparison of peroxide selectivity and potential window width among the electrocatalyst systems[69]; (d) oxygen reduction performance of CNTs and O-CNTs[59]

  • 2.2 杂原子掺杂非金属基催化剂

  • 2.2.1 氮掺杂碳及其功能化

  • 氮掺杂碳材料作为非金属催化剂,电化学测试表明,在酸性和碱性溶液中,催化活性与氮含量呈线性关系,对ORR具有较高的催化活性.掺杂含氮基团是提高碳材料2e-ORR电催化活性的有效方法[71-73].对于纯碳来说,BET比表面积和提高的碳表面缺陷位置以及较正Zeta电位都可以进一步提高H2O2的产率.为了研究氮掺杂碳H2O2反应性之间的互相关系、选择性和表面物理化学性质,Sun等[74]合成了一种H2O2选择性高达98%的氮掺杂介孔碳催化剂.如图5a所示,对这种氮掺杂介孔碳材料CMK-3而言,氮掺杂碳催化剂材料的H2O2选择性更多地取决于氮掺杂效应,而不是Zeta电位和缺陷位点.在碱性条件下,HOO-阴离子的产率接近561.7 mmol·h-1·g-1.两电子机制是由于氮周围的“自由基”碳原子牢固结合而产生,而C=C键上的氧分子会随着临氮原子数的增加而增加[75-76].Fellinger等[77]通过引入正丁基-3-甲基吡啶双氰胺氮源形成的氮掺杂碳,证明了这一点.另外,在较高温度(1 000℃)下,合成的对比材料更支持四电子过程.碳材料中的呲咯氮在高温下无法从高分辨率的XPS中看到,而可以证明其对2e-催化活性起到了关键作用.

  • 在掺氮碳基催化剂的活性位的问题上,一些人认为存在于吡啶或吡咯的N位点[78].通过g-C3N4模板化策略对N结构和多孔结构的优化,Li等[79]开发了一种结构可调控的富氮多层石墨烯(N-FLG),阐明了吡咯-N的关键作用.如图5b所示,调节N-FLG的掺氮质量比后发现,OOH*和O*中间产物在C的K边缘光谱上的变化吸附曲线以及吡咯-N峰在N的K边氧烷光谱上负移.结果表明,该催化剂对电化学合成H2O2的选择性高达95%,吡咯烷-N含量与H2O2选择性呈正相关的线性关系.

  • 而另一些人则认为石墨化的N位点是活性的中心[80-81].最近,Kim等[82]基于sp2碳位点为ORR活性位点的研究进一步揭示了P50碳纸支撑的掺氮氧化石墨烯(NrGO)的化学和结构性质;他们结合XPS、拉曼光谱和HRTEM等手段表征后发现,ORR催化活性中心在掺氮后仍为sp3碳区附近的sp2位点,这是由于N掺杂附近的邻碳在ORR环境中被H+或OH-等物质覆盖.此外,他们利用第一性原理理论对H2O2的机理进行了探究[76],发现轻度还原的氧化石墨烯无论在酸碱性溶液中对H2O2的选择性均达到了99%,但催化活性与溶液的pH值息息相关.另外他们还指出,发生耦合质子电子转移的决定性因素是费米能级的电子密度.

  • 2.2.2 硫掺杂碳及其功能化

  • 与纯碳材料相比,富硫电子的特性使掺杂硫的碳基复合材料有利于提高ORR中的电催化活性[83-86].先前的报告表明,在用硫掺杂碳基材料后,内部硫-碳界面处会产生电场,导致碳原子吸收更多的电子[87-88].这加速了催化剂中的电子传输,有效地促进了氧的吸附并进一步降低了过电势[89-91]

  • 图5(a)氮掺杂碳的N 1s核能级区域高分辨率XPS光谱[74];(b)N-FLG的合成和结构表征[78]

  • Fig.5 (a) High-resolution XPS spectra of N 1s core level region of N-doped carbon[74]; (b) synthesis and structural characterization of N-FLG[78]

  • 目前,引入硫的方法很多,包括原位包裹法[87]、硫的聚合物改性[92]、硫的物理化学吸附[8793]等.Chen等[92]使用简单的两步二氧化硅模板方法制备了碳硫掺杂的空心多孔碳球-硫复合材料(HPCS-S).使用HRTEM分析,他们观察到球形碳上存在硫,平均颗粒尺寸为2~5 nm(图6a—f).他们还观察到高度结晶的硫纳米单晶.由于压缩应力,硫纳米晶体与碳球紧密结合,导致界面处的电子分布.在碱性溶液中,观察到硫化后多孔碳球的2e-ORR催化活性显著提高,并且H2O2的选择性从20%增加至72%.此外,硫掺杂将转移的电子数从3.5减少到2.7. H2O2的法拉第效率确定为70%,产率达到183.99 mmol·g-1. DFT计算表明,通过硫掺杂形成的C—S键本身表现出较低的过电势和较高的H2O2选择性.

  • 用硫进行的表面改性可以改善碳基材料的电化学活性以及用于电解池的电极的润湿性[95-96].Perazzolo等[97]使用多种有机前体合成具有高表面氮的硫掺杂或共掺杂介孔碳(MCs).由于硫的电负性类似于碳的电负性,并且原子半径较大,因此特定浓度的硫掺杂可以提高MC的催化活性.但是,在高浓度(> 2%)下,增加的硫含量会影响O2排放的动力学,从而导致活性降低.值得注意的是,N-MC和S-MC在低pH值下表现出独特的催化活性.据报道,吡啶N的质子化/去质子化是增强N-MC的催化活性的关键,该机制影响ORR中间产物的吸附/解吸[98]

  • 2.2.3 氟掺杂碳及其功能化

  • 通常认为,H2O2的产率与催化剂的电子结构有关.由于电负性不同,上述氮、硫等杂原子掺杂碳材料中,具有较高电负性的氮原子可以通过破坏p共轭体系的完整性和诱导电荷再分配来激活碳p电子,从而改变碳材料的吸附特性[99].破坏电中性,引起电荷再分配,可以大大改善催化剂的电子结构,从而为氧还原生成过氧化氢创造更多的活性中心[7277100].在这种情况下,鉴于氟(F)的高电负性,可以诱导相邻的碳极化以产生活性中心并增强氧与碳之间的相互作用[90].同时,在碳材料中掺杂F可以诱导电荷极化,改变费米能级[101-102],调节电子转移性质,从而改变碳材料的吸附特性,有利于H2O2的生成[77]

  • 图6(a—f)HPCS和HPCS-S的SEM图像、TEM图像和HR-TEM图像[92];(g)不同类型的F掺杂和纯碳材料上O2和 OOH吸附的计算模型[93];(h)NPC-1000上不同电位的H2O2浓度和电流效率[94]

  • Fig.6 (a-f) SEM (up panels) , TEM (middle panels) , and HR-TEM (down panels) images of HPCS (left) and HPCS-S (right) [92]; (g) calculation models of O2 and OOH adsorption on different types of F-doped and pure carbon materials[93]; (h) concentration (left) and current efficiency (right) of H2O2 on NPC-1000 at different potentials (up panels) or different initial pH (down panels) [94]

  • 先前的大多数报道认为,氟掺杂的碳纳米材料主要遵循氧的四电子途径[90].Zhao等[93]研究发现,H2O2选择性与OHH中间体在电催化表面的吸附能有关.他们报道了一种F掺杂多孔碳(FPC)催化剂,通过调节氟含量来影响碳材料的电子结构(图6g),即在碳骨架上形成共价结合的-CF2和-CF3物种.以这种方式调节O2分子活化和促进OOH*中间脱附,从而影响H2O2的选择性.

  • Pang等[99]在电Fenton降解有机污染物的应用研究再次表明,F的掺杂可以控制碳的电子结构,使电子转移途径趋于2e-.为进一步提高掺F碳基的催化活性,一些研究人员同时将两种活性位点引入碳骨架中,以提高电催化H2O2的性能.Chen等[103]设计了一种以聚偏二氟乙烯(PVDF)为模板,以多巴胺为氮源的N、F共掺杂空心纳米球(NF-Cs).理论模型计算表明,这种共掺杂结构被证实形成了C—F和C—N共价键.具有高电负性的F原子使介位的碳原子被活化,从而使其对OOH的吸附能力很高.N原子提高ORR催化活性和F原子提高ORR对H2O2选择性的结果表明,杂原子共掺杂的协同效应有助于实现碳基电催化剂对H2O2电催化的高效催化.

  • 2.2.4 硼掺杂碳及其功能化

  • 硼氮杂化体系可以提供独特的电子结构.在使用高硼和氮浓度的极端情况下,六方氮化硼(h-BN)在碳晶格内形成一些杂合的、随机分布的h-BN和C相畴,即硼碳氮混合体系(BCN)[104]

  • h-BN畴与石墨烯晶格界面的独特行为、表面在石墨烯衬底所具有的BCN构型与氧的结合能力较弱(ΔG<1.1 eV),导致OOH*中间体质子化,使H2O2成为反应主要产物[105].这种B和N浓度可调控体系,使得电催化过程优先通过2e-ORR来驱动生成H2O2.基于这一特性,这种B—C—N材料能够在电催化CO2还原、析氢反应和超级电容器电极等多个催化场景进行应用[106]

  • 2.2.5 其他杂原子掺杂

  • 类似于氮掺杂碳催化剂的催化机理,该催化剂激活π电子并引起电荷再分布,多元素掺杂碳、金属-氮共掺杂碳和碳化金属有机骨架(MOF)可以调节吸附/离解在碳材料上的O2和OOH*中间体,从而提高H2O2的选择性[107]

  • 碳材料的多孔结构可以显著提高氧分子的传质速率并提供更多的活性位点,而金属有机骨架(MOF)是实现此目的的理想前体[95107].Liu等[108]通过在2,6-二羧酸锌吡啶(ZnPDA)的吡啶前体上直接掺杂氮(图6h),并通过控制煅烧温度来制备具有可调节孔结构的N掺杂碳材料.多孔结构减少了中间体OOH-的停留时间并能够使H2O2从催化剂表面迅速解离,避免了H2O2进一步还原为H2O[109]

  • 3 氧气还原生产H2O2的反应器开发

  • 在迄今为止开发的众多有希望的电催化剂中,上述金属及非金属催化剂因其独特的反应特性而具有出色的H2O2选择性.但是,实验室条件与实际生产设备明显不同.此外,评估碳材料电催化性能的最常用方法是RDE/RRDE.RRDE电极的催化反应面积小,并且高速旋转有利于H2O2从催化剂表面的快速解吸,这不适用于商业应用(图7a).为了设计实际的电解槽以满足实际的生产要求,需要大的催化面积、高电流和高产量[110-112]

  • 据报道,整个电解槽都浸入液体电解质中的H电解槽装置是生产H2O2的反应器(图7b).Yamanaka等[57]首次将质子交换膜(PEM)并入H电解槽装置中以产生H2O2.该PEM电解池可以在纯水中电合成H2O2,从而避免了电解液中其他离子的影响.但是,由于氧气在室温和常规压力条件下的溶解度较低(8 mg·L-1),因此两电子转移动力学受氧传质控制,从而限制了生产H2O2的催化反应的电流密度.气体扩散电极(GDE)可以将氧气直接供应到催化剂表面,而不受溶解氧浓度的限制,从而克服了与氧气传质速率有关的挑战[113].Li等[114]设计了一种PEM燃料电池,通过在Co-C复合材料上的GDE扩散,利用H2和O2连续产生H2O2,从而有效地净化了饮用水(图7c).

  • 但是,在这种情况下,膜附近的H2O2局部浓度可能会很高.根据Yamanaka等[57]的方法,高的局部浓度进一步加速了H2O2的还原动力学或化学分解反应.Murayama等[115]通过暴露于固体聚合物电解质(SPE)直接合成H2O2,设计了一种由碳黑阴极催化剂、铂碳(Pt/C)阳极以及阴离子和阳离子交换膜(AEM和CEM)形成的“三明治”结构[116],具有磺酸基的苯乙烯-二乙烯基苯共聚物微球被用作固体电解液,并组装在阳极和阴极的两面上,以形成完整的电解槽进行测试(图7d)[117].在引入硝酸处理的炭黑纳米颗粒后,Perry等[5]开发了覆盖有10%表面氧的炭黑作为2e-ORR催化剂.具体来说,使用分别引入阳极和阴极负载在气体扩散层上(Sigracet 35 BC,Fuel Cell)、Nafion 115 薄膜(Fuel Cell Store)被夹在两个 PTFE 片之间以分隔腔室.在这项研究中包括功能化苯乙烯-二乙烯基苯共聚物微球或无机 CsxH3-xPW12O40.电化学产生的阳离子(H+)和阴离子(HO2-)在电场的驱动下穿过多孔电解质层并重新结合形成 H2O2.流经多孔电解质层的去离子水随后溶解不含杂质的 H2O2.观察到的结果表明,在0.438 V的起始电势下,H2O2的选择性增加到98%,优于迄今为止报道的最高的O2到H2O2转化率.根据文献报道,去离子水流速可以直接影响生成H2O2的浓度[115].根据实验分析,去离子水的流量固定为27 mL·h-1,可以直接获得20%的H2O2溶液.

  • 图7 电化学氧还原生产H2O2电解槽的设计进展[120]:(a)RRDE装置用于测定氧气还原H2O2的产率;(b)H-型电解池结构的示意图;(c)连续流动池的示意图,其中催化剂沉积在GDE上;(d)基于膜的流动反应器;(e)微流体反应器

  • Fig.7 Progress in the design of electrolytic cells for the production of H2O2 by electrochemical oxygen reduction[120]: (a) RRDE setup to measure yield of H2O2 from oxygen reduction; (b) schematic of an H-cell configuration; (c) schematic of a continuous flow cell with a catalyst deposited on a GDE; (d) membrane-based flow reactor; (e) microfluidic reactor

  • 此外,有报道指出,基于自然空气扩散的超疏水系统可提高氧气的传质速率(图7e),从而使反应器在空气中获得较高的H2O2产量成为可能[118].Zhang等[119]使用碳毡作为基材和扩散层,制备了自然空气扩散电极(NADE),使空气自然扩散到催化剂表面而无需外力.通过调节催化层的疏水性可以建立稳定的超疏水性三相界面.在不充气的情况下,因此获得了101.67 mg·h-1·cm-2的高H2O2产量.

  • 4 结语

  • 近年来,通过两电子氧还原途径生产H2O2已经成为一种环境友好且高效的电化学合成方法.新型的2e-ORR催化剂的理论模拟研究以及各类催化剂的相关结构设计已成为研究热点.本文综述了金属及非金属材料在H2O2生产中的最新应用(表1).通过对氧还原过程中间体的相对结合强度调节,以降低O—O键的断裂倾向,这种策略已被证明可以提高过氧化氢根等物种的选择性,并进而产生H2O2.进一步的研究证实,调节材料的局部原子结构,通过结合表面基团进行功能化以及掺杂外来原子也可以促进过氧化氢的产生[4123]

  • 表1 电合成H2O2电极催化剂的选择

  • Table1 Selection of catalysts for electrosynthesis of H2O2 electrode

  • 通常认为ORR过程中的催化活性位以及中间体OOH*的电子转移机理起着至关重要的作用.研究人员已报道可以通过界面工程以及在表面上设计特定的官能团来增强OOH*的吸附能力并加速H2O2的解吸,从而优化现有的材料,进一步提高H2O2的选择性及活性.此外,本综述还总结了结构调整策略的研究,这些策略影响了掺杂后混合体的结构,例如C—S和C—N键的形成以及金属-氮-碳配位(M—N—C),可以改变碳原子的结构,将杂原子分散到独立的反应位点,有序的官能团可以有效地提高催化活性和H2O2的选择性[124]

  • 尽管目前认为开发出很多先进材料在大规模生产H2O2时足以替代昂贵的贵金属,但仍需要克服许多挑战,包括结构调整、长期性能以及电极和反应器的实际设计.

  • 1)金属氧化物和碳基复合材料仍需进一步发展.事实证明,负载在碳材料上的过渡金属氧化物具有出色的ORR活性(主要通过4e-途径)[125-126].这些材料包括钙钛矿型氧化物、尖晶石型氧化物和其他金属氧化物.然而,迄今为止,很少有金属氧化物与碳基材料偶联成为2e-ORR催化剂.由于改性材料保留了O—O键,因此可以预期金属氧化物复合材料的结构调整将迅速释放由具有高活性的金属氧化物产生的OOH*

  • 2)碳基材料的催化活性仍有很大的提高空间.如本文所述,碳基材料的表面改性可以产生许多活性位点,从而通过杂原子掺杂改善2e-ORR的催化性能.与碱性材料溶液中的Pt和Pd-Hg催化剂等商业材料相比,此类材料已显示出优异的ORR活性.但是,在中性电解质或弱酸性环境中,许多碳基材料通过两电子途径的氧反应无法与贵金属催化剂相比[127]

  • 3)尚未完全理解碳基电催化剂的反应机理和活性中心.许多文献研究已经使用成熟的DFT技术探索了碳基催化剂的活性中心.但是,在确定H2O2生产过程中的活性位点时,这些结果仍然是模棱两可的.一方面,这可以归因于碳催化剂的复杂且非均质的结构.另一方面,由于不同的测试设备和表征环境,研究报告在相同的电解质中报告了不同的ORR活性,这导致对掺氮碳材料和相邻碳原子的活性中心的认识不明确.需要使用先进的高分辨率透射电子显微镜或原位拉曼技术进行进一步的电化学分析,以确定活性物质和氧还原反应的中心[128]

  • 4)用于从碳基材料实际生产过氧化氢的电解池的设计需要进一步发展.迄今为止,已使用诸如RRDE、LSV、循环伏安法(CV)等实验室技术来评估大多数催化剂的电化学反应.但是,按比例缩放的RRDE电极的测试面积相对较小,并且需要特定的环境,因此不适合商业规模使用.为了满足工业生产的苛刻要求,有必要设计和建造适用于较大电流密度和输出功率的商业测试设备,例如膜流通池设备、燃料电池和固体电解质反应池.

  • 总而言之,通过两电子ORR产生H2O2仍处于研究的早期阶段,具有机遇和挑战.特别是大多数 pH 依赖性、ORR活性和选择性研究都需要逐项筛选.虽然大多数碳基材料在碱性介质中可以表现出更高的双电子 ORR 选择性,但未来的研究工作应该集中在高活性金属与碳基材料偶联催化产生H2O2上,以提高整体反应活性.在设计高效催化剂、研究催化剂结构、活性位点之间的关系以及反应设备的实际应用等方面做出更多的努力,将进一步优化其催化性能,提高过氧化氢产率,并有助于实现大规模工业生产应用.

  • 参考文献

    • [1] Zhang X,Xia Y,Xia C,et al.Insights into practical-scale electrochemical H2O2 synthesis[J].Trends in Chemistry,2020,2(10):942-953

    • [2] Sun Y Y,Han L,Strasser P.A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production[J].Chemical Society Reviews,2020,49(18):6605-6631

    • [3] Tang C,Jiao Y,Shi B Y,et al.Coordination tunes selectivity:two-electron oxygen reduction on high-loading molybdenum single-atom catalysts[J].Angewandte Chemie International Edition,2020,59(23):9171-9176

    • [4] Jiang K,Zhao J J,Wang H T.Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide[J].Advanced Functional Materials,2020,30(35):2003321

    • [5] Perry S C,Pangotra D,Vieira L,et al.Electrochemical synthesis of hydrogen peroxide from water and oxygen[J].Nature Reviews Chemistry,2019,3(7):442-458

    • [6] Hage R,Lienke A.Applications of transition-metal catalysts to textile and wood-pulp bleaching[J].Angewandte Chemie International Edition,2006,45(2):206-222

    • [7] Lane B S,Burgess K.Metal-catalyzed epoxidations of alkenes with hydrogen peroxide[J].Chemical Reviews,2003,103(7):2457-2473

    • [8] Ciriminna R,Albanese L,Meneguzzo F,et al.Hydrogen peroxide:a key chemical for today's sustainable development[J].ChemSusChem,2016,9(24):3374-3381

    • [9] Riedl H J.Production of hydrogen peroxide:US,2158525 [P].1939

    • [10] Yuan Q L,Zhao J J,Mok D H,et al.Electrochemical hydrogen peroxide synthesis from selective oxygen reduction over metal selenide catalysts[J].Nano Letters,2022,22(3):1257-1264

    • [11] Lewis R J,Hutchings G J.Recent advances in the direct synthesis of H2O2[J].ChemCatChem,2019,11(1):298-308

    • [12] Lunsford J H.The direct formation of H2O2 from H2 and O2 over palladium catalysts[J].Journal of Catalysis,2003,216(1/2):455-460

    • [13] Dissanayake D P,Lunsford J H.Evidence for the role of colloidal palladium in the catalytic formation of H2O2 from H2 and O2[J].Journal of Catalysis,2002,206(2):173-176

    • [14] Edwards J K,Solsona B,Edwin N N,et al.Switching off hydrogen peroxide hydrogenation in the direct synthesis process[J].Science,2009,323(5917):1037-1041

    • [15] Yang S,Verdaguer-Casadevall A,Arnarson L,et al.Toward the decentralized electrochemical production of H2O2:a focus on the catalysis[J].ACS Catalysis,2018,8(5):4064-4081

    • [16] Jung E,Shin H,Lee B H,et al.Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production[J].Nature Materials,2020,19(4):436-442

    • [17] Kulkarni A,Siahrostami S,Patel A,et al.Understanding catalytic activity trends in the oxygen reduction reaction[J].Chemical Reviews,2018,118(5):2302-2312

    • [18] Peterson A A,Abild-Pedersen F,Studt F,et al.How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels[J].Energy & Environmental Science,2010,3(9):1311-1315

    • [19] Adzic R R,Tripkovic A V,Markovic N M,et al.Structural effects in electrocatalysis oxidation of formic acid and oxygen reduction on single-crystal electrodes and the effects of foreign metal adatoms[J].Journal of Electroanalytical Chemistry,1983,150(1/2):79-88

    • [20] Pizzutilo E,Freakley S J,Cherevko S,et al.Gold-palladium bimetallic catalyst stability:consequences for hydrogen peroxide selectivity[J].ACS Catalysis,2017,7(9):5699-5705

    • [21] Jirkovský J S,Panas I,Ahlberg E,et al.Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production[J].Journal of the American Chemical Society,2011,133(48):19432-19441

    • [22] Verdaguer-Casadevall A,Deiana D,Karamad M,et al.Trends in the electrochemical synthesis of H2O2:enhancing activity and selectivity by electrocatalytic site engineering[J].Nano Letters,2014,14(3):1603-1608

    • [23] Lu Y Z,Jiang Y Y,Gao X H,et al.Charge state-dependent catalytic activity of [Au25(SC12H25)18]nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide[J].Chemical Communications,2014,50(62):8464-8467

    • [24] Choi C H,Kim M,Kwon H C,et al.Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst[J].Nature Communications,2016,7(1):1-9

    • [25] Calle-Vallejo F,Tymoczko J,Colic V,et al.Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors[J].Science,2015,350(6257):185-189

    • [26] Song X Z,Li N,Zhang H,et al.Promotion of hydrogen peroxide production on graphene-supported atomically dispersed platinum:effects of size on oxygen reduction reaction pathway[J].Journal of Power Sources,2019,435:226771

    • [27] Hu C G,Dai L M.Carbon-based metal-free catalysts for electrocatalysis beyond the ORR[J].Angewandte Chemie International Edition,2016,55(39):11736-11758

    • [28] Pegis M L,Wise C F,Martin D J,et al.Oxygen reduction by homogeneous molecular catalysts and electrocatalysts[J].Chemical Reviews,2018,118(5):2340-2391

    • [29] Montemore M M,van Spronsen M A,Madix R J,et al.O2 activation by metal surfaces:implications for bonding and reactivity on heterogeneous catalysts[J].Chemical Reviews,2018,118(5):2816-2862

    • [30] Yang S,Kim J,Tak Y J,et al.Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions[J].Angewandte Chemie International Edition,2016,55(6):2058-2062

    • [31] Choi C H,Kwon H C,Yook S,et al.Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface[J].The Journal of Physical Chemistry C,2014,118(51):30063-30070

    • [32] Gawande M B,Fornasiero P,Zbo ř il R.Carbon-based single-atom catalysts for advanced applications[J].ACS Catalysis,2020,10(3):2231-2259

    • [33] Jiang K,Back S,Akey A J,et al.Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination[J].Nature Communications,2019,10(1):1-11

    • [34] Gao J J,Yang H B,Huang X,et al.Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst[J].Chem,2020,6(3):658-674

    • [35] Gan J,Luo W,Chen W Y,et al.Mechanistic understanding of size-dependent oxygen reduction activity and selectivity over Pt/CNT nanocatalysts[J].European Journal of Inorganic Chemistry,2019,2019(27):3210-3217

    • [36] Li F,Han G F,Noh H J,et al.Boosting oxygen reduction catalysis with abundant copper single atom active sites[J].Energy & Environmental Science,2018,11(8):2263-2269

    • [37] Hammer B,Nørskov J K.Theoretical surface science and catalysis—calculations and concepts[J].Advances in Catalysis,2000,45:71-129

    • [38] Chung H T,Cullen D A,Higgins D,et al.Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst[J].Science,2017,357(6350):479-484

    • [39] He Y H,Hwang S,Cullen D A,et al.Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs:carbon-shell confinement strategy[J].Energy & Environmental Science,2019,12(1):250-260

    • [40] Zitolo A,Goellner V,Armel V,et al.Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials[J].Nature Materials,2015,14(9):937-942

    • [41] Fei H L,Dong J C,Feng Y X,et al.General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities[J].Nature Catalysis,2018,1(1):63-72

    • [42] Pan Y,Liu S J,Sun K A,et al.A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site:a superior trifunctional catalyst for overall water splitting and Zn—air batteries[J].Angewandte Chemie International Edition,2018,57(28):8614-8618

    • [43] Li J Z,Chen M J,Cullen D A,et al.Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells[J].Nature Catalysis,2018,1(12):935-945

    • [44] Zhang Y W,Lucas J M,Song P,et al.Superresolution fluorescence mapping of single-nanoparticle catalysts reveals spatiotemporal variations in surface reactivity[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(29):8959-8964

    • [45] Wang X X,Prabhakaran V,He Y H,et al.Iron-free cathode catalysts for proton-exchange-membrane fuel cells:cobalt catalysts and the peroxide mitigation approach[J].Advanced Materials,2019,31(31):1805126

    • [46] Zheng Z K,Ng Y H,Wang D W,et al.Epitaxial growth of Au-Pt-Ni nanorods for direct high selectivity H2O2 production[J].Advanced Materials,2016,28(45):9949-9955

    • [47] Barros W R P,Wei Q L,Zhang G X,et al.Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on Printex carbon and Graphene[J].Electrochimica Acta,2015,162:263-270

    • [48] Xiao Y,Hong J,Wang X,et al.Revealing kinetics of two-electron oxygen reduction reaction at single-molecule level[J].Journal of the American Chemical Society,2020,142(30):13201-13209

    • [49] Carneiro J F,Paulo M J,Siaj M,et al.Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration[J].Journal of Catalysis,2015,332:51-61

    • [50] Li W,Liu J,Zhao D Y.Mesoporous materials for energy conversion and storage devices[J].Nature Reviews Materials,2016,1(6):1-17

    • [51] Jiang H,Gu J X,Zheng X S,et al.Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR,OER and HER[J].Energy & Environmental Science,2019,12(1):322-333

    • [52] Sun K,Xu W W,Lin X,et al.Electrochemical oxygen reduction to hydrogen peroxide via a two-electron transfer pathway on carbon-based single-atom catalysts[J].Advanced Materials Interfaces,2021,8(8):2001360

    • [53] Gong K P,Du F,Xia Z H,et al.Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J].Science,2009,323(5915):760-764

    • [54] Lu Z J,Bao S J,Gou Y T,et al.Nitrogen-doped reduced-graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J].RSC Advances,2013,3(12):3990-3995

    • [55] Leng W H,Zhu W C,Ni J,et al.Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode[J].Applied Catalysis A:General,2006,300(1):24-35

    • [56] Yu F K,Zhou M H,Zhou L,et al.A novel electro-Fenton process with H2O2 generation in a rotating disk reactor for organic pollutant degradation[J].Environmental Science and Technology Letters,2014,1:320-324

    • [57] Yamanaka I,Murayama T.Neutral H2O2 synthesis by electrolysis of water and O2[J].Angewandte Chemie International Edition,2008,47(10):1900-1902

    • [58] Kim H W,Ross M B,Kornienko N,et al.Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts[J].Nature Catalysis,2018,1(4):282-290

    • [59] Lu Z Y,Chen G X,Siahrostami S,et al.High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J].Nature Catalysis,2018,1(2):156-162

    • [60] Tammeveski K,Kontturi K,Nichols R J,et al.Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes[J].Journal of Electroanalytical Chemistry,2001,515(1/2):101-112

    • [61] Yan H,Zhao X X,Guo N,et al.Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity[J].Nature Communications,2018,9(1):1-9

    • [62] Siahrostami S,Villegas S J,Mostaghimi A H B,et al.A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide[J].ACS Catalysis,2020,10(14):7495-7511

    • [63] Wu K H,Shi W,Wang D,et al.In situ electrostatic modulation of path selectivity for the oxygen reduction reaction on Fe—N doped carbon catalyst[J].Chemistry of Materials,2017,29(11):4649-4653

    • [64] Lin Y M,Wu K H,Lu Q,et al.Electrocatalytic water oxidation at quinone-on-carbon:a model system study[J].Journal of the American Chemical Society,2018,140(44):14717-14724

    • [65] Marshall A T,Vaisson-Béthune L.Avoid the quasi-equilibrium assumption when evaluating the electrocatalytic oxygen evolution reaction mechanism by Tafel slope analysis[J].Electrochemistry Communications,2015,61:23-26

    • [66] Lu X Y,Wang D,Wu K H,et al.Oxygen reduction to hydrogen peroxide on oxidized nanocarbon:identification and quantification of active sites[J].Journal of Colloid and Interface Science,2020,573:376-383

    • [67] Chen M X,Zhu M Z,Zuo M,et al.Identification of catalytic sites for oxygen reduction in metal/nitrogen-doped carbons with encapsulated metal nanoparticles[J].Angewandte Chemie International Edition,2020,59(4):1627-1633

    • [68] Han G F,Li F,Zou W,et al.Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2[J].Nature Communications,2020,11(1):1-9

    • [69] Wu K H,Wang D,Lu X Y,et al.Highly selective hydrogen peroxide electrosynthesis on carbon:in situ interface engineering with surfactants[J].Chem,2020,6(6):1443-1458

    • [70] Jeon I Y,Shin Y R,Sohn G J,et al.Edge-carboxylated graphene nanosheets via ball milling[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(15):5588-5593

    • [71] Wohlgemuth S A,White R J,Willinger M G,et al.A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction[J].Green Chemistry,2012,14(5):1515-1523

    • [72] Sheng X,Daems N,Geboes B,et al.N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2[J].Applied Catalysis B:Environmental,2015,176/177:212-224

    • [73] Favaro M,Perini L,Agnoli S,et al.Electrochemical behavior of N and Ar implanted highly oriented pyrolytic graphite substrates and activity toward oxygen reduction reaction[J].Electrochimica Acta,2013,88:477-487

    • [74] Sun Y Y,Sinev I,Ju W,et al.Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts[J].ACS Catalysis,2018,8(4):2844-2856

    • [75] Sidik R A,Anderson A B,Subramanian N P,et al.O2 reduction on graphite and nitrogen-doped graphite:experiment and theory[J].The Journal of Physical Chemistry B,2006,110(4):1787-1793

    • [76] Okamoto Y.First-principles molecular dynamics simulation of O2 reduction on nitrogen-doped carbon[J].Applied Surface Science,2009,256(1):335-341

    • [77] Fellinger T P,Hasché F,Strasser P,et al.Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide[J].Journal of the American Chemical Society,2012,134(9):4072-4075

    • [78] Zhao H Y,Shen X Q,Chen Y,et al.A COOH-terminated nitrogen-doped carbon aerogel as a bulk electrode for completely selective two-electron oxygen reduction to H2O2[J].Chemical Communications,2019,55(44):6173-6176

    • [79] Li L Q,Tang C,Zheng Y,et al.Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon[J].Advanced Energy Materials,2020,10(21):2000789

    • [80] Guo D H,Shibuya R,Akiba C,et al.Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J].Science,2016,351(6271):361-365

    • [81] Bu Y F,Nam G,Kim S,et al.A tailored bifunctional electrocatalyst:boosting oxygen reduction/evolution catalysis via electron transfer between N-doped graphene and perovskite oxides[J].Small,2018,14(48):e1802767

    • [82] Kim H W,Bukas V J,Park H,et al.Mechanisms of two-electron and four-electron electrochemical oxygen reduction reactions at nitrogen-doped reduced graphene oxide[J].ACS Catalysis,2020,10(1):852-863

    • [83] Xia W,Mahmood A,Liang Z B,et al.Earth-abundant nanomaterials for oxygen reduction[J].Angewandte Chemie International Edition,2016,55(8):2650-2676

    • [84] Nie Y,Li L,Wei Z D.Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J].Chemical Society Reviews,2015,44(8):2168-2201

    • [85] Higgins D,Zamani P,Yu A P,et al.The application of graphene and its composites in oxygen reduction electrocatalysis:a perspective and review of recent progress[J].Energy & Environmental Science,2016,9(2):357-390

    • [86] Jeon I Y,Zhang S,Zhang L P,et al.Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction:the electron spin effect[J].Advanced Materials,2013,25(42):6138-6145

    • [87] Ji L W,Rao M M,Zheng H M,et al.Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J].Journal of the American Chemical Society,2011,133(46):18522-18525

    • [88] Paraknowitsch J P,Thomas A.Doping carbons beyond nitrogen:an overview of advanced heteroatom doped carbons with boron,sulphur and phosphorus for energy applications[J].Energy & Environmental Science,2013,6(10):2839-2855

    • [89] Liu G,Niu P,Yin L C,et al.α-sulfur crystals as a visible-light-active photocatalyst[J].Journal of the American Chemical Society,2012,134(22):9070-9073

    • [90] He W H,Wang Y,Jiang C H,et al.Structural effects of a carbon matrix in non-precious metal O2-reduction electrocatalysts[J].Chemical Society Reviews,2016,45(9):2396-2409

    • [91] Zhu C Z,Li H,Fu S F,et al.Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures[J].Chemical Society Reviews,2016,45(3):517-531

    • [92] Chen G Y,Liu J W,Li Q Q,et al.A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts[J].Nano Research,2019,12(10):2614-2622

    • [93] Zhao K,Su Y,Quan X,et al.Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon[J].Journal of Catalysis,2018,357:118-126

    • [94] Zhang D Y,Liu T C,Yin K,et al.Selective H2O2 production on N-doped porous carbon from direct carbonization of metal organic frameworks for electro-Fenton mineralization of antibiotics[J].Chemical Engineering Journal,2020,383:123184

    • [95] Ju Z C,Zhang S,Xing Z,et al.Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties[J].ACS Applied Materials & Interfaces,2016,8(32):20682-20690

    • [96] Li F,Han G F,Bu Y F,et al.Revealing isolated M—N3C1 active sites for efficient collaborative oxygen reduction catalysis[J].Angewandte Chemie International Edition,2020,59(52):23678-23683

    • [97] Perazzolo V,Durante C,Pilot R,et al.Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide[J].Carbon,2015,95:949-963

    • [98] Ma G Q,Huang F F,Wen Z Y,et al.Enhanced performance of lithium sulfur batteries with conductive polymer modified separators[J].Journal of Materials Chemistry A,2016,4(43):16968-16974

    • [99] Pang Q,Liang X,Kwok C Y,et al.Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J].Nature Energy,2016,1(9):1-11

    • [100] Favaro M,Ferrighi L,Fazio G,et al.Single and multiple doping in graphene quantum dots:unraveling the origin of selectivity in the oxygen reduction reaction[J].ACS Catalysis,2015,5(1):129-144

    • [101] Zhang J L,Chen G L,Zhang Q,et al.Self-assembly synthesis of N-doped carbon aerogels for supercapacitor and electrocatalytic oxygen reduction[J].ACS Applied Materials & Interfaces,2015,7(23):12760-12766

    • [102] Roldán L,Truong-Phuoc L,Ansón-Casaos A,et al.Mesoporous carbon doped with N,S heteroatoms prepared by one-pot auto-assembly of molecular precursor for electrocatalytic hydrogen peroxide synthesis[J].Catalysis Today,2018,301:2-10

    • [103] Chen S C,Chen Z H,Siahrostami S,et al.Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide[J].Journal of the American Chemical Society,2018,140(25):7851-7859

    • [104] Jia N,Yang T,Shi S F,et al.N,F-codoped carbon nanocages:an efficient electrocatalyst for hydrogen peroxide electroproduction in alkaline and acidic solutions[J].ACS Sustainable Chemistry & Engineering,2020,8(7):2883-2891

    • [105] Martins J D R,Chacham H.Disorder and segregation in B-C-N graphene-type layers and nanotubes:tuning the band gap[J].ACS Nano,2011,5(1):385-393

    • [106] Liu H Y,Hou Z F,Hu C H,et al.Electronic and magnetic properties of fluorinated graphene with different coverage of fluorine[J].The Journal of Physical Chemistry C,2012,116(34):18193-18201

    • [107] You B,Jiang N,Sheng M L,et al.Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction[J].ACS Catalysis,2015,5(12):7068-7076

    • [108] Liu Y M,Zhang Y J,Cheng K,et al.Selective electrochemical reduction of carbon dioxide to ethanol on a boron-and nitrogen-Co-doped nanodiamond[J].Angewandte Chemie International Edition,2017,56(49):15607-15611

    • [109] Jiang Y Y,Ni P J,Chen C X,et al.Selective electrochemical H2O2 production through two-electron oxygen electrochemistry[J].Advanced Energy Materials,2018,8(31):1801909

    • [110] Ren S X,Joulié D,Salvatore D,et al.Molecular electrocatalysts can mediate fast,selective CO2 reduction in a flow cell[J].Science,2019,365(6451):367-369

    • [111] Weekes D M,Salvatore D A,Reyes A,et al.Electrolytic CO2 reduction in a flow cell[J].Accounts of Chemical Research,2018,51(4):910-918

    • [112] Burdyny T,Smith W A.CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions[J].Energy & Environmental Science,2019,12(5):1442-1453

    • [113] Otsuka K,Yamanaka I.One step synthesis of hydrogen peroxide through fuel cell reaction[J].Electrochimica Acta,1990,35(2):319-322

    • [114] Li W,Bonakdarpour A,Gyenge E,et al.Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell[J].ChemSusChem,2013,6(11):2137-2143

    • [115] Murayama T,Yamanaka I.Electrosynthesis of neutral H2O2 solution from O2 and water at a mixed carbon cathode using an exposed solid-polymer-electrolyte electrolysis cell[J].The Journal of Physical Chemistry C,2011,115(13):5792-5799

    • [116] Xia C,Xia Y,Zhu P,et al.Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte[J].Science,2019,366(6462):226-231

    • [117] Coutinho F M B,Rezende S M,Soares B G.Characterization of sulfonated poly(styrene-divinylbenzene)and poly(divinylbenzene)and its application as catalysts in esterification reaction[J].Journal of Applied Polymer Science,2006,102(4):3616-3627

    • [118] Song Z Q,Xu C L,Sheng X,et al.Utilization of peroxide reduction reaction at air-liquid-solid joint interfaces for reliable sensing system construction[J].Advanced Materials,2018,30(6):1701473

    • [119] Zhang Q Z,Zhou M H,Ren G B,et al.Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion[J].Nature Communications,2020,11(1):1731

    • [120] Jung E,Shin H,Hooch Antink W,et al.Recent advances in electrochemical oxygen reduction to H2O2:catalyst and cell design[J].ACS Energy Letters,2020,5(6):1881-1892

    • [121] Shen R A,Chen W X,Peng Q,et al.High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution[J].Chem,2019,5(8):2099-2110

    • [122] Pang Y Y,Wang K,Xie H,et al.Mesoporous carbon hollow spheres as efficient electrocatalysts for oxygen reduction to hydrogen peroxide in neutral electrolytes[J].ACS Catalysis,2020,10(14):7434-7442

    • [123] Thiyagarajan N,Janmanchi D,Tsai Y F,et al.A carbon electrode functionalized by a tricopper cluster complex:overcoming overpotential and production of hydrogen peroxide in the oxygen reduction reaction[J].Angewandte Chemie International Edition,2018,57(14):3612-3616

    • [124] Wang K,Huang J H,Chen H X,et al.Recent advances in electrochemical 2e oxygen reduction reaction for on-site hydrogen peroxide production and beyond[J].Chemical Communications,2020,56(81):12109-12121

    • [125] Chen Y,Bu Y F,Zhang Y X,et al.A highly efficient and robust nanofiber cathode for solid oxide fuel cells[J].Advanced Energy Materials,2017,7(6):1601890

    • [126] Bu Y F,Kim S,Kwon O,et al.A composite catalyst based on perovskites for overall water splitting in alkaline conditions[J].ChemElectroChem,2019,6(5):1520-1524

    • [127] Zhou W J,Jia J,Lu J,et al.Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction[J].Nano Energy,2016,28:29-43

    • [128] Trzes'niewski B J,Diaz-Morales O,Vermaas D A,et al.In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts:the effect of pH on electrochemical activity[J].Journal of the American Chemical Society,2015,137(48):15112-15121

  • 参考文献

    • [1] Zhang X,Xia Y,Xia C,et al.Insights into practical-scale electrochemical H2O2 synthesis[J].Trends in Chemistry,2020,2(10):942-953

    • [2] Sun Y Y,Han L,Strasser P.A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production[J].Chemical Society Reviews,2020,49(18):6605-6631

    • [3] Tang C,Jiao Y,Shi B Y,et al.Coordination tunes selectivity:two-electron oxygen reduction on high-loading molybdenum single-atom catalysts[J].Angewandte Chemie International Edition,2020,59(23):9171-9176

    • [4] Jiang K,Zhao J J,Wang H T.Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide[J].Advanced Functional Materials,2020,30(35):2003321

    • [5] Perry S C,Pangotra D,Vieira L,et al.Electrochemical synthesis of hydrogen peroxide from water and oxygen[J].Nature Reviews Chemistry,2019,3(7):442-458

    • [6] Hage R,Lienke A.Applications of transition-metal catalysts to textile and wood-pulp bleaching[J].Angewandte Chemie International Edition,2006,45(2):206-222

    • [7] Lane B S,Burgess K.Metal-catalyzed epoxidations of alkenes with hydrogen peroxide[J].Chemical Reviews,2003,103(7):2457-2473

    • [8] Ciriminna R,Albanese L,Meneguzzo F,et al.Hydrogen peroxide:a key chemical for today's sustainable development[J].ChemSusChem,2016,9(24):3374-3381

    • [9] Riedl H J.Production of hydrogen peroxide:US,2158525 [P].1939

    • [10] Yuan Q L,Zhao J J,Mok D H,et al.Electrochemical hydrogen peroxide synthesis from selective oxygen reduction over metal selenide catalysts[J].Nano Letters,2022,22(3):1257-1264

    • [11] Lewis R J,Hutchings G J.Recent advances in the direct synthesis of H2O2[J].ChemCatChem,2019,11(1):298-308

    • [12] Lunsford J H.The direct formation of H2O2 from H2 and O2 over palladium catalysts[J].Journal of Catalysis,2003,216(1/2):455-460

    • [13] Dissanayake D P,Lunsford J H.Evidence for the role of colloidal palladium in the catalytic formation of H2O2 from H2 and O2[J].Journal of Catalysis,2002,206(2):173-176

    • [14] Edwards J K,Solsona B,Edwin N N,et al.Switching off hydrogen peroxide hydrogenation in the direct synthesis process[J].Science,2009,323(5917):1037-1041

    • [15] Yang S,Verdaguer-Casadevall A,Arnarson L,et al.Toward the decentralized electrochemical production of H2O2:a focus on the catalysis[J].ACS Catalysis,2018,8(5):4064-4081

    • [16] Jung E,Shin H,Lee B H,et al.Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production[J].Nature Materials,2020,19(4):436-442

    • [17] Kulkarni A,Siahrostami S,Patel A,et al.Understanding catalytic activity trends in the oxygen reduction reaction[J].Chemical Reviews,2018,118(5):2302-2312

    • [18] Peterson A A,Abild-Pedersen F,Studt F,et al.How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels[J].Energy & Environmental Science,2010,3(9):1311-1315

    • [19] Adzic R R,Tripkovic A V,Markovic N M,et al.Structural effects in electrocatalysis oxidation of formic acid and oxygen reduction on single-crystal electrodes and the effects of foreign metal adatoms[J].Journal of Electroanalytical Chemistry,1983,150(1/2):79-88

    • [20] Pizzutilo E,Freakley S J,Cherevko S,et al.Gold-palladium bimetallic catalyst stability:consequences for hydrogen peroxide selectivity[J].ACS Catalysis,2017,7(9):5699-5705

    • [21] Jirkovský J S,Panas I,Ahlberg E,et al.Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production[J].Journal of the American Chemical Society,2011,133(48):19432-19441

    • [22] Verdaguer-Casadevall A,Deiana D,Karamad M,et al.Trends in the electrochemical synthesis of H2O2:enhancing activity and selectivity by electrocatalytic site engineering[J].Nano Letters,2014,14(3):1603-1608

    • [23] Lu Y Z,Jiang Y Y,Gao X H,et al.Charge state-dependent catalytic activity of [Au25(SC12H25)18]nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide[J].Chemical Communications,2014,50(62):8464-8467

    • [24] Choi C H,Kim M,Kwon H C,et al.Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst[J].Nature Communications,2016,7(1):1-9

    • [25] Calle-Vallejo F,Tymoczko J,Colic V,et al.Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors[J].Science,2015,350(6257):185-189

    • [26] Song X Z,Li N,Zhang H,et al.Promotion of hydrogen peroxide production on graphene-supported atomically dispersed platinum:effects of size on oxygen reduction reaction pathway[J].Journal of Power Sources,2019,435:226771

    • [27] Hu C G,Dai L M.Carbon-based metal-free catalysts for electrocatalysis beyond the ORR[J].Angewandte Chemie International Edition,2016,55(39):11736-11758

    • [28] Pegis M L,Wise C F,Martin D J,et al.Oxygen reduction by homogeneous molecular catalysts and electrocatalysts[J].Chemical Reviews,2018,118(5):2340-2391

    • [29] Montemore M M,van Spronsen M A,Madix R J,et al.O2 activation by metal surfaces:implications for bonding and reactivity on heterogeneous catalysts[J].Chemical Reviews,2018,118(5):2816-2862

    • [30] Yang S,Kim J,Tak Y J,et al.Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions[J].Angewandte Chemie International Edition,2016,55(6):2058-2062

    • [31] Choi C H,Kwon H C,Yook S,et al.Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface[J].The Journal of Physical Chemistry C,2014,118(51):30063-30070

    • [32] Gawande M B,Fornasiero P,Zbo ř il R.Carbon-based single-atom catalysts for advanced applications[J].ACS Catalysis,2020,10(3):2231-2259

    • [33] Jiang K,Back S,Akey A J,et al.Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination[J].Nature Communications,2019,10(1):1-11

    • [34] Gao J J,Yang H B,Huang X,et al.Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst[J].Chem,2020,6(3):658-674

    • [35] Gan J,Luo W,Chen W Y,et al.Mechanistic understanding of size-dependent oxygen reduction activity and selectivity over Pt/CNT nanocatalysts[J].European Journal of Inorganic Chemistry,2019,2019(27):3210-3217

    • [36] Li F,Han G F,Noh H J,et al.Boosting oxygen reduction catalysis with abundant copper single atom active sites[J].Energy & Environmental Science,2018,11(8):2263-2269

    • [37] Hammer B,Nørskov J K.Theoretical surface science and catalysis—calculations and concepts[J].Advances in Catalysis,2000,45:71-129

    • [38] Chung H T,Cullen D A,Higgins D,et al.Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst[J].Science,2017,357(6350):479-484

    • [39] He Y H,Hwang S,Cullen D A,et al.Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs:carbon-shell confinement strategy[J].Energy & Environmental Science,2019,12(1):250-260

    • [40] Zitolo A,Goellner V,Armel V,et al.Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials[J].Nature Materials,2015,14(9):937-942

    • [41] Fei H L,Dong J C,Feng Y X,et al.General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities[J].Nature Catalysis,2018,1(1):63-72

    • [42] Pan Y,Liu S J,Sun K A,et al.A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site:a superior trifunctional catalyst for overall water splitting and Zn—air batteries[J].Angewandte Chemie International Edition,2018,57(28):8614-8618

    • [43] Li J Z,Chen M J,Cullen D A,et al.Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells[J].Nature Catalysis,2018,1(12):935-945

    • [44] Zhang Y W,Lucas J M,Song P,et al.Superresolution fluorescence mapping of single-nanoparticle catalysts reveals spatiotemporal variations in surface reactivity[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(29):8959-8964

    • [45] Wang X X,Prabhakaran V,He Y H,et al.Iron-free cathode catalysts for proton-exchange-membrane fuel cells:cobalt catalysts and the peroxide mitigation approach[J].Advanced Materials,2019,31(31):1805126

    • [46] Zheng Z K,Ng Y H,Wang D W,et al.Epitaxial growth of Au-Pt-Ni nanorods for direct high selectivity H2O2 production[J].Advanced Materials,2016,28(45):9949-9955

    • [47] Barros W R P,Wei Q L,Zhang G X,et al.Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on Printex carbon and Graphene[J].Electrochimica Acta,2015,162:263-270

    • [48] Xiao Y,Hong J,Wang X,et al.Revealing kinetics of two-electron oxygen reduction reaction at single-molecule level[J].Journal of the American Chemical Society,2020,142(30):13201-13209

    • [49] Carneiro J F,Paulo M J,Siaj M,et al.Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration[J].Journal of Catalysis,2015,332:51-61

    • [50] Li W,Liu J,Zhao D Y.Mesoporous materials for energy conversion and storage devices[J].Nature Reviews Materials,2016,1(6):1-17

    • [51] Jiang H,Gu J X,Zheng X S,et al.Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR,OER and HER[J].Energy & Environmental Science,2019,12(1):322-333

    • [52] Sun K,Xu W W,Lin X,et al.Electrochemical oxygen reduction to hydrogen peroxide via a two-electron transfer pathway on carbon-based single-atom catalysts[J].Advanced Materials Interfaces,2021,8(8):2001360

    • [53] Gong K P,Du F,Xia Z H,et al.Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J].Science,2009,323(5915):760-764

    • [54] Lu Z J,Bao S J,Gou Y T,et al.Nitrogen-doped reduced-graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J].RSC Advances,2013,3(12):3990-3995

    • [55] Leng W H,Zhu W C,Ni J,et al.Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode[J].Applied Catalysis A:General,2006,300(1):24-35

    • [56] Yu F K,Zhou M H,Zhou L,et al.A novel electro-Fenton process with H2O2 generation in a rotating disk reactor for organic pollutant degradation[J].Environmental Science and Technology Letters,2014,1:320-324

    • [57] Yamanaka I,Murayama T.Neutral H2O2 synthesis by electrolysis of water and O2[J].Angewandte Chemie International Edition,2008,47(10):1900-1902

    • [58] Kim H W,Ross M B,Kornienko N,et al.Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts[J].Nature Catalysis,2018,1(4):282-290

    • [59] Lu Z Y,Chen G X,Siahrostami S,et al.High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J].Nature Catalysis,2018,1(2):156-162

    • [60] Tammeveski K,Kontturi K,Nichols R J,et al.Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes[J].Journal of Electroanalytical Chemistry,2001,515(1/2):101-112

    • [61] Yan H,Zhao X X,Guo N,et al.Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity[J].Nature Communications,2018,9(1):1-9

    • [62] Siahrostami S,Villegas S J,Mostaghimi A H B,et al.A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide[J].ACS Catalysis,2020,10(14):7495-7511

    • [63] Wu K H,Shi W,Wang D,et al.In situ electrostatic modulation of path selectivity for the oxygen reduction reaction on Fe—N doped carbon catalyst[J].Chemistry of Materials,2017,29(11):4649-4653

    • [64] Lin Y M,Wu K H,Lu Q,et al.Electrocatalytic water oxidation at quinone-on-carbon:a model system study[J].Journal of the American Chemical Society,2018,140(44):14717-14724

    • [65] Marshall A T,Vaisson-Béthune L.Avoid the quasi-equilibrium assumption when evaluating the electrocatalytic oxygen evolution reaction mechanism by Tafel slope analysis[J].Electrochemistry Communications,2015,61:23-26

    • [66] Lu X Y,Wang D,Wu K H,et al.Oxygen reduction to hydrogen peroxide on oxidized nanocarbon:identification and quantification of active sites[J].Journal of Colloid and Interface Science,2020,573:376-383

    • [67] Chen M X,Zhu M Z,Zuo M,et al.Identification of catalytic sites for oxygen reduction in metal/nitrogen-doped carbons with encapsulated metal nanoparticles[J].Angewandte Chemie International Edition,2020,59(4):1627-1633

    • [68] Han G F,Li F,Zou W,et al.Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2[J].Nature Communications,2020,11(1):1-9

    • [69] Wu K H,Wang D,Lu X Y,et al.Highly selective hydrogen peroxide electrosynthesis on carbon:in situ interface engineering with surfactants[J].Chem,2020,6(6):1443-1458

    • [70] Jeon I Y,Shin Y R,Sohn G J,et al.Edge-carboxylated graphene nanosheets via ball milling[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(15):5588-5593

    • [71] Wohlgemuth S A,White R J,Willinger M G,et al.A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction[J].Green Chemistry,2012,14(5):1515-1523

    • [72] Sheng X,Daems N,Geboes B,et al.N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2[J].Applied Catalysis B:Environmental,2015,176/177:212-224

    • [73] Favaro M,Perini L,Agnoli S,et al.Electrochemical behavior of N and Ar implanted highly oriented pyrolytic graphite substrates and activity toward oxygen reduction reaction[J].Electrochimica Acta,2013,88:477-487

    • [74] Sun Y Y,Sinev I,Ju W,et al.Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts[J].ACS Catalysis,2018,8(4):2844-2856

    • [75] Sidik R A,Anderson A B,Subramanian N P,et al.O2 reduction on graphite and nitrogen-doped graphite:experiment and theory[J].The Journal of Physical Chemistry B,2006,110(4):1787-1793

    • [76] Okamoto Y.First-principles molecular dynamics simulation of O2 reduction on nitrogen-doped carbon[J].Applied Surface Science,2009,256(1):335-341

    • [77] Fellinger T P,Hasché F,Strasser P,et al.Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide[J].Journal of the American Chemical Society,2012,134(9):4072-4075

    • [78] Zhao H Y,Shen X Q,Chen Y,et al.A COOH-terminated nitrogen-doped carbon aerogel as a bulk electrode for completely selective two-electron oxygen reduction to H2O2[J].Chemical Communications,2019,55(44):6173-6176

    • [79] Li L Q,Tang C,Zheng Y,et al.Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon[J].Advanced Energy Materials,2020,10(21):2000789

    • [80] Guo D H,Shibuya R,Akiba C,et al.Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J].Science,2016,351(6271):361-365

    • [81] Bu Y F,Nam G,Kim S,et al.A tailored bifunctional electrocatalyst:boosting oxygen reduction/evolution catalysis via electron transfer between N-doped graphene and perovskite oxides[J].Small,2018,14(48):e1802767

    • [82] Kim H W,Bukas V J,Park H,et al.Mechanisms of two-electron and four-electron electrochemical oxygen reduction reactions at nitrogen-doped reduced graphene oxide[J].ACS Catalysis,2020,10(1):852-863

    • [83] Xia W,Mahmood A,Liang Z B,et al.Earth-abundant nanomaterials for oxygen reduction[J].Angewandte Chemie International Edition,2016,55(8):2650-2676

    • [84] Nie Y,Li L,Wei Z D.Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J].Chemical Society Reviews,2015,44(8):2168-2201

    • [85] Higgins D,Zamani P,Yu A P,et al.The application of graphene and its composites in oxygen reduction electrocatalysis:a perspective and review of recent progress[J].Energy & Environmental Science,2016,9(2):357-390

    • [86] Jeon I Y,Zhang S,Zhang L P,et al.Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction:the electron spin effect[J].Advanced Materials,2013,25(42):6138-6145

    • [87] Ji L W,Rao M M,Zheng H M,et al.Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J].Journal of the American Chemical Society,2011,133(46):18522-18525

    • [88] Paraknowitsch J P,Thomas A.Doping carbons beyond nitrogen:an overview of advanced heteroatom doped carbons with boron,sulphur and phosphorus for energy applications[J].Energy & Environmental Science,2013,6(10):2839-2855

    • [89] Liu G,Niu P,Yin L C,et al.α-sulfur crystals as a visible-light-active photocatalyst[J].Journal of the American Chemical Society,2012,134(22):9070-9073

    • [90] He W H,Wang Y,Jiang C H,et al.Structural effects of a carbon matrix in non-precious metal O2-reduction electrocatalysts[J].Chemical Society Reviews,2016,45(9):2396-2409

    • [91] Zhu C Z,Li H,Fu S F,et al.Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures[J].Chemical Society Reviews,2016,45(3):517-531

    • [92] Chen G Y,Liu J W,Li Q Q,et al.A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts[J].Nano Research,2019,12(10):2614-2622

    • [93] Zhao K,Su Y,Quan X,et al.Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon[J].Journal of Catalysis,2018,357:118-126

    • [94] Zhang D Y,Liu T C,Yin K,et al.Selective H2O2 production on N-doped porous carbon from direct carbonization of metal organic frameworks for electro-Fenton mineralization of antibiotics[J].Chemical Engineering Journal,2020,383:123184

    • [95] Ju Z C,Zhang S,Xing Z,et al.Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties[J].ACS Applied Materials & Interfaces,2016,8(32):20682-20690

    • [96] Li F,Han G F,Bu Y F,et al.Revealing isolated M—N3C1 active sites for efficient collaborative oxygen reduction catalysis[J].Angewandte Chemie International Edition,2020,59(52):23678-23683

    • [97] Perazzolo V,Durante C,Pilot R,et al.Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide[J].Carbon,2015,95:949-963

    • [98] Ma G Q,Huang F F,Wen Z Y,et al.Enhanced performance of lithium sulfur batteries with conductive polymer modified separators[J].Journal of Materials Chemistry A,2016,4(43):16968-16974

    • [99] Pang Q,Liang X,Kwok C Y,et al.Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J].Nature Energy,2016,1(9):1-11

    • [100] Favaro M,Ferrighi L,Fazio G,et al.Single and multiple doping in graphene quantum dots:unraveling the origin of selectivity in the oxygen reduction reaction[J].ACS Catalysis,2015,5(1):129-144

    • [101] Zhang J L,Chen G L,Zhang Q,et al.Self-assembly synthesis of N-doped carbon aerogels for supercapacitor and electrocatalytic oxygen reduction[J].ACS Applied Materials & Interfaces,2015,7(23):12760-12766

    • [102] Roldán L,Truong-Phuoc L,Ansón-Casaos A,et al.Mesoporous carbon doped with N,S heteroatoms prepared by one-pot auto-assembly of molecular precursor for electrocatalytic hydrogen peroxide synthesis[J].Catalysis Today,2018,301:2-10

    • [103] Chen S C,Chen Z H,Siahrostami S,et al.Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide[J].Journal of the American Chemical Society,2018,140(25):7851-7859

    • [104] Jia N,Yang T,Shi S F,et al.N,F-codoped carbon nanocages:an efficient electrocatalyst for hydrogen peroxide electroproduction in alkaline and acidic solutions[J].ACS Sustainable Chemistry & Engineering,2020,8(7):2883-2891

    • [105] Martins J D R,Chacham H.Disorder and segregation in B-C-N graphene-type layers and nanotubes:tuning the band gap[J].ACS Nano,2011,5(1):385-393

    • [106] Liu H Y,Hou Z F,Hu C H,et al.Electronic and magnetic properties of fluorinated graphene with different coverage of fluorine[J].The Journal of Physical Chemistry C,2012,116(34):18193-18201

    • [107] You B,Jiang N,Sheng M L,et al.Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction[J].ACS Catalysis,2015,5(12):7068-7076

    • [108] Liu Y M,Zhang Y J,Cheng K,et al.Selective electrochemical reduction of carbon dioxide to ethanol on a boron-and nitrogen-Co-doped nanodiamond[J].Angewandte Chemie International Edition,2017,56(49):15607-15611

    • [109] Jiang Y Y,Ni P J,Chen C X,et al.Selective electrochemical H2O2 production through two-electron oxygen electrochemistry[J].Advanced Energy Materials,2018,8(31):1801909

    • [110] Ren S X,Joulié D,Salvatore D,et al.Molecular electrocatalysts can mediate fast,selective CO2 reduction in a flow cell[J].Science,2019,365(6451):367-369

    • [111] Weekes D M,Salvatore D A,Reyes A,et al.Electrolytic CO2 reduction in a flow cell[J].Accounts of Chemical Research,2018,51(4):910-918

    • [112] Burdyny T,Smith W A.CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions[J].Energy & Environmental Science,2019,12(5):1442-1453

    • [113] Otsuka K,Yamanaka I.One step synthesis of hydrogen peroxide through fuel cell reaction[J].Electrochimica Acta,1990,35(2):319-322

    • [114] Li W,Bonakdarpour A,Gyenge E,et al.Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell[J].ChemSusChem,2013,6(11):2137-2143

    • [115] Murayama T,Yamanaka I.Electrosynthesis of neutral H2O2 solution from O2 and water at a mixed carbon cathode using an exposed solid-polymer-electrolyte electrolysis cell[J].The Journal of Physical Chemistry C,2011,115(13):5792-5799

    • [116] Xia C,Xia Y,Zhu P,et al.Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte[J].Science,2019,366(6462):226-231

    • [117] Coutinho F M B,Rezende S M,Soares B G.Characterization of sulfonated poly(styrene-divinylbenzene)and poly(divinylbenzene)and its application as catalysts in esterification reaction[J].Journal of Applied Polymer Science,2006,102(4):3616-3627

    • [118] Song Z Q,Xu C L,Sheng X,et al.Utilization of peroxide reduction reaction at air-liquid-solid joint interfaces for reliable sensing system construction[J].Advanced Materials,2018,30(6):1701473

    • [119] Zhang Q Z,Zhou M H,Ren G B,et al.Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion[J].Nature Communications,2020,11(1):1731

    • [120] Jung E,Shin H,Hooch Antink W,et al.Recent advances in electrochemical oxygen reduction to H2O2:catalyst and cell design[J].ACS Energy Letters,2020,5(6):1881-1892

    • [121] Shen R A,Chen W X,Peng Q,et al.High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution[J].Chem,2019,5(8):2099-2110

    • [122] Pang Y Y,Wang K,Xie H,et al.Mesoporous carbon hollow spheres as efficient electrocatalysts for oxygen reduction to hydrogen peroxide in neutral electrolytes[J].ACS Catalysis,2020,10(14):7434-7442

    • [123] Thiyagarajan N,Janmanchi D,Tsai Y F,et al.A carbon electrode functionalized by a tricopper cluster complex:overcoming overpotential and production of hydrogen peroxide in the oxygen reduction reaction[J].Angewandte Chemie International Edition,2018,57(14):3612-3616

    • [124] Wang K,Huang J H,Chen H X,et al.Recent advances in electrochemical 2e oxygen reduction reaction for on-site hydrogen peroxide production and beyond[J].Chemical Communications,2020,56(81):12109-12121

    • [125] Chen Y,Bu Y F,Zhang Y X,et al.A highly efficient and robust nanofiber cathode for solid oxide fuel cells[J].Advanced Energy Materials,2017,7(6):1601890

    • [126] Bu Y F,Kim S,Kwon O,et al.A composite catalyst based on perovskites for overall water splitting in alkaline conditions[J].ChemElectroChem,2019,6(5):1520-1524

    • [127] Zhou W J,Jia J,Lu J,et al.Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction[J].Nano Energy,2016,28:29-43

    • [128] Trzes'niewski B J,Diaz-Morales O,Vermaas D A,et al.In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts:the effect of pH on electrochemical activity[J].Journal of the American Chemical Society,2015,137(48):15112-15121

  • 地址:江苏省南京市宁六路219号    邮编:210044

    联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

    南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司