-
0 引言
-
随着全球化石能源日益枯竭和气候变暖加剧,开发和利用新能源是当前电力系统转型的首要目标[1-4].低压台区作为配电系统的重要组成部分,蕴含着巨大的新能源接入和消纳潜力.但在光-荷的不确定性和相关性影响下,低压台区中分布式光伏(DPV)的接入和消纳仍面临挑战.一方面,低压配电台区空间分布范围小、负荷空间集群效应弱,负荷需求存在较大的随机性[5-6]; 另一方面,如何处理好光-荷的时序相关性,促进低压台区中分布式光伏消纳有待深入研究[7-9].
-
目前,已有学者在光-荷的不确定性和时序相关性方面展开了研究.文献[7]基于模糊C聚类建立了低压台区源-荷时序特性模型,提出了最大化台区供电能力的源-荷协同接入方法.文献[10-11]构建了光伏接入配电网的随机规划模型,较好地处理了光-荷的不确定性和时序相关性,但由于难以获取不确定量的真实概率分布,存在求解效率和结果鲁棒性较低的问题.文献[12-13]构建了DPV规模化接入的鲁棒优化模型,有效缓解了光伏随机性对系统安全运行的影响,提高了模型求解效率.但由于其忽略了不确定量的概率分布,在最恶劣场景下决策,导致结果过于保守或不经济[14-15].进一步,有学者对分布鲁棒优化方法在DPV接入方面的应用展开了研究[16-17].分布鲁棒优化方法计及不确定量的概率分布,基于历史数据信息构建不确定量的概率分布模糊集,在最恶劣概率分布下进行决策,提高了鲁棒优化的经济性和随机规划的鲁棒性,从而能够获取更优的分布式光伏接入结果[17].
-
基于此,本文构建了计及源、荷时序特性的低压台区分布式光伏接入分布鲁棒优化模型.首先考虑光-荷的时序相关性和随机性,提出了基于欧式距离的光-荷联合时序场景优化聚类生成方法.其次,采用1-范数和∞-范数约束构建联合时序场景的不确定概率分布集合,构建了低压台区分布式光伏接入分布鲁棒优化模型,在最大化低压台区光伏接入容量的同时,保证了台区光伏消纳.同时,考虑到用户侧储能的逐渐接入,建立了低压台区分布式储能接入的数学模型,研究了储能接入及储能充放电机制对低压台区分布式光伏接入的影响.最后,以实际配电台区为例进行仿真计算,验证了本文模型的有效性.
-
1 基于优化聚类的光-荷联合时序场景生成
-
1.1 光伏/负荷场景相似性指标
-
采用欧式距离来衡量不同光伏出力场景或负荷场景间的相似性[11],则有:
-
式中:dPV(αi,αj)为光伏出力场景αi和αj间的欧式距离; dLd(βi,βj)为负荷场景βi和βj间的欧式距离; t为时段下标; T为采样点数,取24.
-
进一步,定义以下净负荷场景来反映光-荷联合时序场景的相似性:
-
式中: 为第i个净负荷场景所对应的向量.
-
通过不同净负荷场景间的欧式距离来反映光-荷联合时序场景的相似性,则有:
-
根据上文所定义的不同光伏出力场景、负荷场景以及光-荷联合场景间的欧式距离,建立计及光伏和负荷整体特性、光-荷时序相关性的综合性度量指标:
-
式中:ξi,j为第i个光伏/负荷场景和第j个光伏/负荷场景的相似性度量指标; λ1、λ2和λ3为权重系数,由熵权法确定[19].
-
1.2 基于优化聚类的典型场景生成方法
-
K-mean聚类[20]、模糊C聚类[21]等典型场景生成方法对初始聚类中心的选取依赖较大,聚类质量低[11].因此,本文基于上述场景相似性指标,提出了以最小化簇内误差二次方和(SSE)为目标的优化聚类典型场景生成方法,其最佳聚类数由文献[22]的方法确定.优化聚类模型如下:
-
式中:Nse为场景总数; yj为选择场景j为聚类中心的0/1变量,若选择第j个光伏/负荷场景为聚类中心,yj=1,否则为0; xi,j为场景分类的0/1状态变量,当场景i被归为以场景j为中心的类中时xi,j=1,否则为0; K为聚类个数.
-
式(5)第1式为优化聚类的目标函数,即聚类后各类的簇内误差二次方和最小; 第2式为聚类中心个数约束; 第3式表示1个场景仅能被归为1类; 第4式表示仅当场景j被选为聚类中心时,场景i才能被归为以场景j为聚类中心的类.
-
由上述优化聚类结果得到计及光-荷时序特性的光伏/负荷典型时序场景及其初始概率如下:
-
式中:ns为第s类中场景个数; 为第s个典型光伏出力场景; 为第s个典型负荷场景,ρs,0为第s个典型光伏/负荷场景的初始概率.
-
2 配电台区DPV接入分布鲁棒优化模型
-
低压台区中分布式光伏的接入位置和容量对台区整体的光伏接入具有显著影响[23].因此,本文以台区中分布式光伏的安装位置和容量为决策变量,考虑线路潮流平衡约束、DPV安装/运行约束等构建了配电台区DPV接入优化模型,最大化台区整体的光伏接入容量; 采用分布鲁棒优化方法处理台区中光-荷的不确定性,基于1-范数和∞-范数建立了光伏/负荷典型场景不确定集合[24],将最恶劣概率分布下典型场景弃光率的期望值维持在指定水平,保证台区光伏消纳.
-
2.1 目标函数
-
目标函数为最大化台区光伏接入容量:
-
式中:ΩPV为可接入光伏节点集合; ui,pv表示节点i是否接入光伏的0/1决策变量; Pi,PVN为节点i的光伏接入容量.
-
2.2 模型约束
-
台区分布式光伏接入模型约束包括功率平衡约束、DPV接入和运行约束、台区安全运行约束以及储能配合情况下的储能接入和运行约束.
-
2.2.1 功率平衡约束
-
由于低压台区线路短,功率损耗相对较小,为克服原始非线性潮流模型求解效率低和凸松驰潮流模型松弛间隙过大的问题,本文采用线性DistFlow潮流模型[25-27]:
-
式中:s为典型场景下标; t为调度时段下标; δ(i)为以节点i为首节点的支路的末节点集合; π(i)为以节点i为末节点的支路的首节点集合; Ps,t,i和Qs,t,i分别为节点i的有功和无功注入功率; Ps,t,ij和Qs,t,ij分别为支路ij的有功和无功功率; vs,t,i为节点i电压幅值的平方; Rij和Xij分别为支路ij的电阻和电抗; Ps,t,i,tap和Qs,t,i,tap分别为配电变压器注入节点i的有功和无功功率,与配电变压器不相连的节点该功率为0; Ps,t,i,pv和Qs,t,i,pv分别为分布式光伏注入节点i的有功和无功功率; Ps,t,i,L和Qs,t,i,L分别为节点i的有功和无功负荷功率; Ps,t,i,ch和Ps,t,i,dis分别为节点i上储能的充电和放电功率; QESSs,t,i为储能逆变器注入节点i的无功功率.
-
式(9)第1、4式和第2、5式分别为节点的有功功率和无功功率平衡约束; 第3式为支路电压降落方程.
-
2.2.2 DPV接入和运行约束
-
1)DPV接入容量和逆变器运行约束
-
式中: 为节点光伏接入容量上限; τs,t,pv为t时段典型场景s光伏出力标幺值; Ps,t,i,cut为DPV弃光量; φmax为逆变器运行的最大功率因数角; 为逆变器无功补偿上限.
-
式(11)为逆变器有功出力约束; 式(12)第1式为逆变器运行功率因数约束,第2式为逆变器无功补偿上下限约束.
-
2)典型场景弃光约束
-
为保证低压台区光伏消纳,本节建立了单个典型场景的弃光率约束和最恶劣概率分布下典型场景弃光率期望值上限约束:
-
式中:T为总调度时段;ρs为典型场景s的最恶劣概率; κmax为单个典型场景的弃光率上限; κexp为最恶劣概率分布下典型场景的期望弃光率上限.
-
式(13)第1式为典型场景的弃光率上限约束; 第2式为最恶劣概率分布下典型场景弃光率期望值上限约束.
-
3)DPV投资约束
-
式中:r为折旧率; yPV为光伏寿命; 为年运行维护费用系数; cPV为光伏单位容量投资费用; CPV,in,max为光伏年平均投资成本上限.
-
2.2.3 台区安全运行约束
-
为保证DPV接入后低压台区安全稳定运行,计及节点电压上下限约束、支路容量约束、配变有功和无功功率上下限约束:
-
式中:Sij,max为支路ij的容量上限; vmax和vmin分别为节点电压幅值平方上下限; 为配变向台区输送功率上限; 为配变向上级电网倒送功率上限; 和分别为配变无功功率上下限.
-
2.2.4 储能安装和运行约束
-
储能安装包括储能模块安装和逆变器模块的安装,储能模块的运行和安装约束分别如式(17)和式(18)[28]所示:
-
式中:ui,ESS 为节点i是否接入储能状态变量; 和分别为节点i上储能充放电功率; 和分别为节点i上储能充放电状态变量; 为储能充放电功率上限; 为t时段储能电量; ηch和ηdis分别为储能充放电效率; Δt为相邻调度时段时间间隔; 为节点i上储能安装容量.
-
式中:Ni,ESS为单位储能模块安装数量,采用组合二进制数表示[29]; 为节点i上单位储能安装数量上限; 为单位储能容量; 为单位储能充放电功率上限; 为台区总的单位储能安装数量上限.
-
式(17)第1、2式分别为储能充放电功率上限约束; 第3式为不同时充放电约束; 第4式为储能电量平衡约束; 第5式为储能电量上下限约束.式(18)第1、2式为节点i上单位储能安装数量约束; 第3、4式分别为储能安装容量和充放电功率约束; 第5式为台区单位储能安装数量约束.
-
储能逆变器安装和运行约束如式(19)所示:
-
式中:Si,IN 为储能逆变器接入容量; Ni,Con 为节点i上单位逆变器安装数量; 为单位逆变器视在功率; 为节点i储能逆变器的最大安装容量.
-
式(19)第1式为逆变器运行视在功率约束; 第2、5式为逆变器安装容量上限约束; 第3、4式为单位储能逆变器安装数量的组合二进制数约束.
-
储能安装成本约束如下:
-
式中:yESS为储能寿命; 为储能运行维护费用系数; cess和cCon分别为单位容量和单位视在功率投资费用,CESS,in,max为储能年平均投资成本上限.
-
2.2.5 最恶劣概率分布
-
为保证台区光伏消纳,式(13)中的最恶劣概率分布通过以下max-min双层优化获得:
-
式中:为典型场景的恶劣概率分布不确定集合; ρs,0为典型场景s的初始概率; θ1为1-范数约束下允许的概率偏差值; θ∞为无穷范数约束下允许的概率偏差值.
-
式(21)第1式内层为最小化各场景的弃光量,用于促进台区光伏消纳,外层为最大化各场景的期望弃光量,旨在识别最恶劣概率分布,提高模型整体的鲁棒性.概率不确定集合中第1式为各场景概率之和为1约束; 第2式为各场景恶劣概率上下限约束; 第3式为各场景概率偏差之和的上限约束; 第4式为各场景最大概率的上限约束.
-
根据文献[24]可知,在给定不确定概率置信度α1和α∞的情况下,θ1和θ∞可根据下式计算:
-
不确定置信度α1和α∞越大,其允许的概率偏差θ1和θ∞也就越大,不确定集合约束下所能达到的最恶劣概率分布也就越恶劣,模型保守度增加.
-
3 模型转化和求解
-
上述模型为两阶段三层优化模型:第一阶段为最大化台区光伏的接入容量; 第二阶段是最小化最恶劣概率分布下典型场景的弃光量,从而保证台区光伏消纳满足要求.一阶段模型和二阶段模型间存在变量的相互耦合,且包含式(13)第2式和式(21)中概率偏差的非线性约束,难以直接求解.本节首先将上述约束进行线性等价转化,其次通过C&CG算法将其拆分为主子问题迭代求解[30].
-
3.1 模型转化
-
1)期望弃光率约束线性化转化
-
首先定义典型场景出力系数:
-
式(13)第2式两边同乘,则有:
-
因此,当二阶段识别的最恶劣概率分布ρs已知的情况下,式(24)在一阶段模型中为线性约束.
-
2)概率偏差约束线性化转化
-
式(21)中1-范数概率偏差约束和∞-范数偏差约束可参考文献[30]方法将其转化为混合整数线性约束.
-
3.2 模型求解
-
为后续更为清晰的表述,将上述模型写为以下紧凑形式:
-
式中:x为光伏、储能接入容量决策变量所组成的向量; u为光伏接入状态等变量所组成的向量; ys为其余状态变量,如DPV弃光功率等; A、B、C、D、Es、Ws、G、H为相应约束所对应的系数矩阵; c、b、d、w、e为相应约束所对应的系数向量; δ为相应约束所对应的参数.
-
式(25)第1式为一阶段最大化光伏安装容量目标函数; 第2式为一、二阶段变量线性约束; 第3式为典型场景弃光率约束; 第4式为最恶劣概率分布下典型场景期望弃光率约束; 第5式为容量约束等二阶锥形式约束; 第5式识别最恶劣概率的二阶段模型目标函数; 第6式为不确定概率分布集合.
-
根据C&CG算法可将上述问题拆分为主子问题迭代求解[30]:主问题在有限恶劣概率分布约束下,最大化DPV的接入容量; 子问题在已知主问题获得的DPV接入容量和接入位置情况下,最小化最恶劣概率分布下各典型场景的期望弃光量,识别最恶劣概率分布.主问题(MP)和子问题(SP)分别如式(26)和式(27)所示.
-
式中:l为迭代次数下标; 为第l次迭代子问题识别的典型场景s的概率; L为当前迭代次数.
-
在主问题式(26)中包含整数变量和连续变量,约束为线性约束和二阶锥约束,因此主问题属于混合整数二阶锥规划模型(MISOCP),可归为混合整数二次规划模型(MIQCP)进行高效求解.
-
式中:x*为主问题获得的光伏和储能接入决策变量.
-
子问题式(27)外层决策变量ρs和内层变量ys在约束中无耦合,因此可将其进一步拆分为式(28)所示的子问题1(SP1)和式(29)所示的子问题2(SP2)进行求解.
-
子问题1旨在已知光伏和储能接入容量和位置的情况下,最小化各典型场景的弃光量.由于子问题1只包含连续型变量,约束为线性约束和二阶锥约束,因此属于二阶锥规划模型(SOCP),可归为二次规划模型(QCP)求解.
-
式中: 为子问题1获取的典型场景s的弃光率.
-
子问题2旨在识别主问题获取的光伏和储能接入策略所对应的最恶劣概率分布.通过文献[30]方法线性化以后属于混合整数线性规划模型(MIP).
-
主子问题迭代求解算法如算法1所示:
-
4 算例分析
-
本文以实际配电台区为例进行仿真计算,对上述模型进行验证.系统拓扑如图1所示.台区电压0.38 kV,配变容量630 kVA,配变向上级电网倒送有功功率上限设置为其视在容量的20%.该台区有两种类型导线:JKLYJ-185和JKYJ-35; 支路B5-B8、B13-B18为JKYJ-35导线,线路额定载流量192 A,其余支路均为JKLYJ-185类型导线,线路额定载流量423 A.台区总负荷峰值为101.81+j36.13 kVA.
-
图1 台区系统拓扑图
-
Fig.1 System topology of distribution station area
-
系统中节点1~5、6、8、10~14、16、18、20为光伏待选接入节点,节点5、13为储能待选接入节点; DPV单位容量投资费用为2 000元/kW,寿命20年; 单位储能容量为10 kW·h,单位储能逆变器视在功率为10 kVA,储能其余详细参数见附表1.现有某地实际台区365 d光伏和负荷数据,采样时间1 h,剔除数据缺失场景后共得到300个光伏/负荷场景,采用熵权法对300个场景相似性进行分析,得到场景相似性指标权系数见附表2; 基于文献[22]方法估计其最佳聚类数为8,随后,优化聚类后生成的典型场景及其初始概率见附图1.各典型场景弃光率上限设置为10%,典型场景弃光率期望值上限设置为5%.各节点光伏接入容量上限见附表3.采用GAMS软件平台中GUROBI求解器对模型进行求解,测试系统硬件环境为Intel(R)Core(TM)i5-7300HQ 2.50 GHz,8 GB内存.
-
4.1 光-荷联合时序场景生成方法验证
-
为分析本文场景生成方法的有效性,本小节根据文献[22]的改进K-means算法,以光伏和负荷场景的加权欧式距离作为相似性指标(未考虑光-荷相关性指标),将原始光伏/负荷场景同样划分为8个典型场景进行比较.为分析聚类方法的有效性,参考文献[31]定义指标SIm来衡量聚类中心对原始场景的逼近程度,SIm越小,则聚类中心越逼近与原始场景.本文方法和改进K-means方法聚类结果如表1所示.
-
式中:pi为第i个原始场景的概率; ζi,c为第i个原始场景与第c个聚类中中心的源荷相似性指标.
-
由表1可知本文方法聚类的SIm为0.371 3,明显小于改进K-means算法,即本文方法的聚类结果对原始场景集的逼近效果更好; 同时,本文方法聚类结果的族类误差平方和(SSE)小于K-means算法,即聚类后各类中样本的相似性更高.故而本文方法计及光-荷联合场景相似指标后更能反映光-荷的相关性,且采用优化聚类避免了对初始聚类中心的依赖,从而使得聚类更加有效.
-
4.2 优化结果分析
-
4.2.1 不同优化方法对比
-
为验证本文分布鲁棒优化方法的有效性,本小节在不考虑储能共同接入的情况下,将本文方法与文献[11]的随机规划方法进行了对比,本文方法中α1和α∞均取0.95,台区弃光率对比如表2所示,各节点分布式光伏接入容量对比如图2所示.由于分布鲁棒优化方法进一步计及了典型场景概率分布的不确定性,因此采用分布鲁棒优化方法时台区总接入容量(275.82 kW)略低于采用随机优化时的接入容量(280.83 kW),但由表2和图2可知,分布鲁棒优化方法在随机规划的基础上进一步对各节点DPV接入容量进行了优化,从而使得其各场景最恶劣概率分布下的期望弃光率明显低于随机规划,在一定程度上促进了台区光伏的消纳,避免了DPV的过度接入及浪费.
-
图2 各节点接入容量对比
-
Fig.2 Comparison of access capacity of PV at each node
-
4.2.2 储能与DPV联合接入分析
-
当储能充放电机制设置为2充2放,且储能和光伏总投资费用上限设置为18万元时,储能和分布式光伏接入情况如表3所示; 有无储能配合情况下台区分布式光伏接入容量对比如图3所示.
-
由表3和图3可知,储能配合情况下,台区各节点分布式光伏接入容量均有较为明显的增长,总接入容量由无储能配合情况下的275.82 kW增长为318.05 kW,增长率为15.3%,年平均投资成本增长了6.86万元; 同时,采用文献[32]的电价参数对各场景日收益期望值进行测算,相对无储能配合下日收益期望值增加了124.18元,即年收益期望值增长了4.53万元.由于现阶段储能投资成本相对较高,因此其整体效益是下降的.但随着未来储能技术的成熟,并综合考虑光-储接入所带来的碳排放收益以及在光-储接入后对其运行策略进一步的优化下,其整体收益还有较大的提升空间.因此,在储能配合情况下,通过牺牲一定的经济成本显著增加了台区分布式光伏的接入容量,对推动电力系统的低碳转型和“双碳”目标的实现具有重要意义.
-
图3 有无储能对比
-
Fig.3 Comparison of PV access with or without energy storage
-
对不同储能充放电机制下台区分布式光伏的接入容量进行分析,结果如图4所示.由图4可知,储能的充放电机制对台区分布式光伏的接入容量具有显著影响,随着储能允许充放电次数的增多,台区分布式光伏的总接入容量增大,增势也逐渐趋于平缓.但储能充放电次数过多会导致储能寿命的降低,因此目前主要还是采用2充2放机制或1充1放机制运行.
-
图4 储能充放电机制对DPV接入的影响
-
Fig.4 Influence of energy storage charging-discharging mechanism on DPV access
-
进一步,在储能采用2充2放机制时,对不同年平均投资成本上限下的储能和光伏的接入情况进行对比,结果如图5所示.
-
图5 不同投资上限对DPV接入影响
-
Fig.5 Impact of investment cap on DPV access
-
由图5可知:随着年平均投资成本上限的增长,台区总的光伏和储能接入容量均有所增长,且由于光伏接入容量增长来源于储能的调节,储能接入容量增长速率大于DPV接入容量的增长速率; 当年平均投资成本上限达到22万元后,储能逆变器的接入容量已经能够满足储能对光伏出力的调节需求,因此其接入容量不再增长.
-
4.2.3 分布鲁棒优化方法分析
-
不确定概率分布集合中不确定概率置信度α1和α∞对模型整体的保守度具有显著影响.因此,本文在总投资成本上限为20万,储能机制为2充2放时,对不同的不确定概率置信度下的DPV接入容量进行分析,结果如表4所示.
-
由表4可知,随着不确定置信度的增大,1-范数和∞-范数允许的概率偏差增大,不确定性增大,使得最恶劣概率分布越恶劣,台区总DPV接入容量降低.当给定α∞,α1>α∞时,各典型场景允许的概率偏差之和大于典型场景个数与单个典型场景最大允许概率偏差的乘积,因此1-范数不再起作用,此时,随着1-范数置信度的增大,模型保守性不再增加,台区总DPV接入容量保持不变.实际运用时可根据不同保守性需求采用不同的置信度,以获得相应的DPV接入策略.
-
4.2.4 CCG算法分析
-
设置年平均投资成本成本上限为20万,储能采用2充2放机制运行,此时,CCG求解算法收敛情况如图6所示.
-
图6 CCG算法迭代收敛图
-
Fig.6 Iteratively convergence of CCG algorithm
-
由图6可知,随着迭代次数的增加,概率分布更恶劣,DPV接入容量逐渐降低,第3次迭代DPV接入容量和第2次迭代接入容量相等,但通过对不同位置上光伏接入容量的优化,使得其最恶劣概率分布下的弃光率期望值进一步降低,从而满足收敛标准.总共迭代3次,耗时19.910 s,因此该算法具有较好的收敛性和较高的求解效率.
-
5 结论
-
本文计及台区光-荷的联合时序相关特性,提出一种基于熵权法的优化聚类光-荷典型场景生成方法,并在保证台区消纳情况下,以最大化台区DPV接入容量为目标,建立了低压台区DPV接入的分布鲁棒优化模型.最后,以实际台区为例进行了仿真分析,基于算例结果得到以下结论:
-
1)基于熵权法的优化聚类方法能够有效避免对传统聚类方法初始聚类中心的依赖,同时,能够更好地反映光-荷的时序相关性,使聚类更加有效.
-
2)采用分布鲁棒优化方法处理光-荷典型场景概率分布的不确定性能够提高传统随机规划方法的鲁棒性,优化各节点光伏接入容量,在最大化DPV接入容量的同时保证台区光伏消纳.
-
3)储能的配合接入以及加大投资能够有效提升台区DPV的接入水平,并且台区DPV总接入容量与储能日充放电次数密切相关.
-
4)分布鲁棒优化模型中不确定概率置信度选取对模型的保守度具有较大影响.随着置信度增大,最恶劣概率分布恶劣程度增大,模型保守度上升,DPV接入容量随之下降.
-
本文所建立的模型能够为低压台区分布式光伏的接入提供参考,下一步,将综合储能充放电机制和储能寿命对储能配合下的DPV接入进行建模.
-
附录
-
图1 光伏/负荷典型场景出力
-
Fig.1 Typical scenario output of PV/load
-
参考文献
-
[1] Elavarasan R M,Shafiullah G M,Padmanaban S,et al.A comprehensive review on renewable energy development,challenges,and policies of leading Indian states with an international perspective[J].IEEE Access,8:74432-74457
-
[2] 张智刚,康重庆.碳中和目标下构建新型电力系统的挑战与展望[J].中国电机工程学报,2022,42(8):2806-2819;ZHANG Zhigang,KANG Chongqing.Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J].Proceedings of the CSEE,2022,42(8):2806-2819
-
[3] 雷震,郝雨辰,孔伯骏.太阳辐射对大型渔光互补光伏电站发电效益影响分析[J].南京信息工程大学学报(自然科学版),2021,13(3):377-382;LEI Zhen,HAO Yuchen,KONG Bojun.Solar radiation influence on power generation benefit of large-scale fishery solar complementary photovoltaic power station[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2021,13(3):377-382
-
[4] 杨金海,武家辉,王海云,等.不同渗透率下多种新能源电力系统动态安全域分析[J].电力建设,2022,43(4):58-68;YANG Jinhai,WU Jiahui,WANG Haiyun,et al.Dynamic security region analysis of power system under different penetration rate of new energy[J].Electric Power Construction,2022,43(4):58-68
-
[5] 卢德龙,缪继东,吕培强,等.弱约束关联下考虑社会属性的低压居民台区负荷预测[J].电力大数据,2020,23(10):9-16;LU Delong,MIAO Jidong,LÜ Peiqiang,et al.Low voltage residential area load forecasting considering social attributes under weak constraint association[J].Power Systems and Big Data,2020,23(10):9-16
-
[6] 丁宏,陶晓峰,陆春艳,等.基于RWT-SVM的台区配电网日前负荷预测研究[J].南京信息工程大学学报(自然科学版),2023,15(3):330-336;DING Hong,TAO Xiaofeng,LU Chunyan,et al.Day-ahead load forecasting of distributed power grids based on RWT-SVM[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2023,15(3):330-336
-
[7] 戚艳,骆柏锋,王旭东,等.考虑时序互补特性的配电台区源-荷协同接入方法[J].电力系统及其自动化学报,2019,31(2):112-118;QI Yan,LUO Bofeng,WANG Xudong,et al.Coordinated access method for source-load in distribution area with the consideration of complementary sequential features[J].Proceedings of the CSU-EPSA,2019,31(2):112-118
-
[8] Li J F,Zhang Y,Gao F,et al.Hierarchical optimization method of distribution network considering coordination and interaction of source-network-load[C]//2021 IEEE 5th Conference on Energy Internet and Energy System Integration.Taiyuan,China.IEEE,2021:1231-1236
-
[9] 臧海祥,程礼临,刘玲,等.基于数据驱动的太阳辐射估计和预测研究与展望[J].电力系统自动化,2021,45(11):170-183;ZANG Haixiang,CHENG Lilin,LIU Ling,et al.Research and prospect for data-driven estimation and prediction of solar radiation[J].Automation of Electric Power Systems,2021,45(11):170-183
-
[10] 姚艳,许家玉,金迪,等.基于Coupla理论和夹角余弦法的配电网光伏接入多目标随机规划方法[J].能源与环境,2019(4):38-40,42;YAO Yan,XU Jiayu,JIN Di,et al.Multi-objective stochastic programming method of photovoltaic access in distribution network based on Coupla theory and included angle cosine method[J].Energy and Environment,2019(4):38-40,42
-
[11] 李勇,姚天宇,乔学博,等.基于联合时序场景和源网荷协同的分布式光伏与储能优化配置[J].电工技术学报,2022,37(13):3289-3303;LI Yong,YAO Tianyu,QIAO Xuebo,et al.Optimal configuration of distributed photovoltaic and energy storage system based on joint sequential scenario and source-network-load coordination[J].Transactions of China Electrotechnical Society,2022,37(13):3289-3303
-
[12] 马滕肖,孟祥鹤,白星振,等.考虑规模化分布式光伏接入的配电网台区鲁棒优化规划方法[J].电力电容器与无功补偿,2021,42(2):183-190;MA Tengxiao,MENG Xianghe,BAI Xingzhen,et al.Robust optimization planning method for distribution network considering large-scale distributed PV access[J].Power Capacitor & Reactive Power Compensation,2021,42(2):183-190
-
[13] 方一晨,张沈习,程浩忠,等.含智能软开关的主动配电网分布式光伏准入容量鲁棒优化[J].电力系统自动化,2021,45(7):8-17;FANG Yichen,ZHANG Shenxi,CHENG Haozhong,et al.Robust optimization of distributed photovoltaic hosting capacity of active distribution network with soft open point[J].Automation of Electric Power Systems,2021,45(7):8-17
-
[14] Li J Y,Khodayar M E,Wang J H,et al.Data-driven distributionally robust co-optimization of P2P energy trading and network operation for interconnected microgrids[J].IEEE Transactions on Smart Grid,2021,12(6):5172-5184
-
[15] Yuan Z P,Xia J,Li P.Two-time-scale energy management for microgrids with data-based day-ahead distributionally robust chance-constrained scheduling[J].IEEE Transactions on Smart Grid,2021,12(6):4778-4787
-
[16] 于腾凯,董靓媛,杜晓东,等.考虑机会约束的配电网光伏并网容量分布鲁棒优化方法[J].电力系统保护与控制,2021,49(10):43-50;YU Tengkai,DONG Liangyuan,DU Xiaodong,et al.Distributionally robust optimization method of PV grid-connected capacity in a distribution network considering chance constraints[J].Power System Protection and Control,2021,49(10):43-50
-
[17] 陈泽雄,张新民,王雪锋,等.分布式光伏电站接入配电网的分布鲁棒优化配置方法[J].电力系统保护与控制,2021,49(13):30-42;CHEN Zexiong,ZHANG Xinmin,WANG Xuefeng,et al.A distributionally robust optimal allocation method for distributed photovoltaic generation stations integrated into a distribution network[J].Power System Protection and Control,2021,49(13):30-42
-
[18] 刘娜,武占军,郭灵杰,等.引入电能质量保险机制的日前电能量市场打分出清决策[J].电网技术,2022,46(6):2151-2164;LIU Na,WU Zhanjun,GUO Lingjie,et al.Day-ahead electricity energy market score clearing decision introducing power quality insurance mechanism[J].Power System Technology,2022,46(6):2151-2164
-
[19] 金子烁,刘虎成,寇巍,等.基于层次分析法和熵权法的中小型沼气工程净化提纯技术筛选[J].可再生能源,2021,39(10):1294-1300;JIN Zishuo,LIU Hucheng,KOU Wei,et al.Selection of purification technology for small and medium-sized biogas projects based on AHP and entropy weight method[J].Renewable Energy Resources,2021,39(10):1294-1300
-
[20] Ye C J,Ding Y,Wang P,et al.A data-driven bottom-up approach for spatial and temporal electric load forecasting[J].IEEE Transactions on Power Systems,2019,34(3):1966-1979
-
[21] 李国庆,陆为华,李赫,等.基于模糊C-均值聚类的时序概率潮流快速计算方法[J].电力自动化设备,2021,41(4):116-122;LI Guoqing,LU Weihua,LI He,et al.Fast calculation method of time sequence probabilistic power flow based on fuzzy C-means clustering[J].Electric Power Automation Equipment,2021,41(4):116-122
-
[22] 孙林,刘梦含,徐久成.基于优化初始聚类中心和轮廓系数的K-means聚类算法[J].模糊系统与数学,2022,36(1):47-65;SUN Lin,LIU Menghan,XU Jiucheng.K-means clustering algorithm using optimal initial clustering center and contour coefficient[J].Fuzzy Systems and Mathematics,2022,36(1):47-65
-
[23] 杨潇,程伦,孟良,等.分布式光伏接入容量、位置和方式对多台区网络的影响研究[J].河北电力技术,2021,40(1):5-7;YANG Xiao,CHENG Lun,MENG Liang,et al.Research on influence of distributed photovoltaic with multi-transformers network on condition of different capacity,position and access mode[J].Hebei Electric Power,2021,40(1):5-7
-
[24] Lin Z J,Chen H Y,Yin X.Discussion on “data-driven stochastic unit commitment for integrating wind generation”[J].IEEE Transactions on Power Systems,2019,34(5):3983
-
[25] Baran M E,Wu F F.Network reconfiguration in distribution systems for loss reduction and load balancing[J].IEEE Power Engineering Review,1989,9(4):101-102
-
[26] Guo Z J,Wei W,Chen L J,et al.Distribution system operation with renewables and energy storage:a linear programming based multistage robust feasibility approach[J].IEEE Transactions on Power Systems,2022,37(1):738-749
-
[27] 马智刚,卫志农,陈胜,等.基于椭圆近似的交直流混合配电网灵活性运行域快速计算方法[J].电力系统自动化,2022,46(16):113-121;MA Zhigang,WEI Zhinong,CHEN Sheng,et al.Fast calculation method for flexibility operation region of AC/DC hybrid distribution network based on elliptic approximation[J].Automation of Electric Power Systems,2022,46(16):113-121
-
[28] 裴蕾,卫志农,陈胜,等.交直流混合配电网多阶段随机优化调度模型[J].电力系统保护与控制,2022,50(14):23-32;PEI Lei,WEI Zhinong,CHEN Sheng,et al.Multi-stage stochastic optimization dispatch model for AC-DC hybrid distribution power networks[J].Power System Protection and Control,2022,50(14):23-32
-
[29] 符杨,张智泉,李振坤.基于二阶段鲁棒优化模型的混合交直流配电网无功电压控制策略研究[J].中国电机工程学报,2019,39(16):4764-4774,4978;FU Yang,ZHANG Zhiquan,LI Zhenkun.Research on reactive power voltage control strategy for hybrid AC/DC distribution network based on two-stage robust optimization model[J].Proceedings of the CSEE,2019,39(16):4764-4774,4978
-
[30] 税月,刘俊勇,高红均,等.考虑风电不确定性的电热综合系统分布鲁棒协调优化调度模型[J].中国电机工程学报,2018,38(24):7235-7247,7450;SHUI Yue,LIU Junyong,GAO Hongjun,et al.A distributionally robust coordinated dispatch model for integrated electricity and heating systems considering uncertainty of wind power[J].Proceedings of the CSEE,2018,38(24):7235-7247,7450
-
[31] 刘岩,张亚超,朱蜀,等.计及EV负荷-风电异质场景集的交直流混合配电网多目标分布式协同优化[J].电力自动化设备,2022,42(10):218-226,272;LIU Yan,ZHANG Yachao,ZHU Shu,et al.Multi-objective distributed cooperative optimization of hybrid AC/DC distribution network considering EV load-wind power heterogeneous scenario sets[J].Electric Power Automation Equipment,2022,42(10):218-226,272
-
[32] 程义,李更丰.基于双层模仿学习的多园区系统分布式协同优化调度[J/OL].电力系统自动化:1-22[2022-09-17].http://kns.cnki.net/kcms/detail/32.1180.TP.20220915.1639.002.html;CHENG Yi,LI Gengfeng.Distributed collaborative optimal dispatch of multi-park system based on bilayer imitation learning[J/OL].Automation of Electric Power Systems:1-22[2022-09-17].http://kns.cnki.net/kcms/detail/32.1180.TP.20220915.1639.002.html
-
摘要
为提高低压配电台区中分布式光伏(DPV)的接入容量,促进光伏消纳,本文提出一种计及源荷时序特性的低压台区DPV接入分布鲁棒优化方法.首先,针对低压台区中分布式光伏出力和负荷需求的不确定性,提出一种基于优化聚类的源-荷联合时序场景生成方法;其次,计及电压约束、线路容量约束、逆变器无功补偿约束及光伏消纳约束等,构建低压台区分布式光伏接入分布鲁棒优化模型,在保证各典型场景最恶劣概率分布下的弃光率期望值符合要求的情况下,最大化低压台区中分布式光伏接入容量;然后,建立低压台区分布式储能接入的数学模型,以研究储能接入及其充放电机制对低压台区分布式光伏接入的影响;最后,以实际配电台区为例进行仿真计算,验证了本文模型的有效性.
Abstract
To improve the access capacity of Distributed Photovoltaic (DPV) in the low-voltage distribution station area and promote photovoltaic consumption,a distributionally robust optimization method of DPV access in the low-voltage distribution station area is proposed considering the timing characteristics of source-load.First,a source-load joint timing scenario generation method based on optimized clustering is presented to handle the uncertainty of distributed photovoltaic output and load demand in the low-voltage distribution station area.Next,a distributionally robust optimization model of distributed photovoltaic access in the low-voltage distribution station area is constructed by taking into account the voltage constraints,line capacity constraints,reactive power compensation constraints of inverter and photovoltaic consumption constraints,etc.The proposed approach maximizes the access capacity of DPV while ensuring that the expected value of PV curtailment rate under the worst probability distribution of each typical scenario meets the requirements.Then,a mathematical model of distributed energy storage access in low-voltage distribution station area is established to study the influence of energy storage access and its charging-discharging mechanism on distributed photovoltaic access.Finally,the effectiveness of the proposed model is verified by taking simulation on actual low-voltage distribution station area.