-
0 农业温室气体排放与生物炭农田减排潜力
-
气候变化作为当前世界各国面临的严峻挑战,已严重威胁到人类的生存与发展.联合国政府间气候变化专门委员会(Intergovernmental Panel on Climate Change,IPCC)的第六次评估报告(Sixth Assessment Report,AR6)表明,人类活动主导的温室气体增排是导致大气、海洋和陆地变暖的主要因素[1].AR6 明确指出,当前大气中三大主要温室气体CO2、CH4和N2O的体积分数已经分别高达4.10×10-4、1.87×10-6和3.32×10-7[1].受此影响,近10年全球地表均温较20世纪初提升了1.09℃.
-
与农业相关的生产活动是温室气体重要排放源之一,其对CH4和N2O的排放影响尤为显著 [2-3].据联合国粮农组织FAOSTAT数据库(http://faostat3.fao.org/home/index.html)统计,2018年全球农业源温室气体排放约93亿t CO2-eq(二氧化碳当量,下同),约占全球总人为温室气体排放的11%.其中:畜牧业是最大的农业源,动物肠道发酵贡献了39.3%的农业温室气体排放,畜牧业的粪便管理贡献了15.2%; 化肥使用和稻田CH4排放分别占农业温室气体排放的11.8%和10.1%.此外,其他农业途径如作物秸秆燃烧、农田碳库损失等贡献了农业温室气体排放的16.8%.中国作为拥有巨大人口密度的农业大国,如何减少农业温室气体排放面临着巨大的挑战[4-5].《中国气候变化第三次国家信息通报》[6]表明,中国农业活动相关的温室气体排放量约占温室气体排放总量的7.9%(约8.28亿t CO2-eq),CH4和N2O的贡献分别超过了4亿t和3亿t CO2-eq.农业温室气体减排是“碳中和”目标实现过程中亟待解决的问题.
-
《全球碳捕集与封存现状》报告[7]指出,如果不部署碳捕集、利用及封存项目(Carbon Capture,Utilization and Storage,CCUS),实现“碳中和”几乎是不可能完成的目标.CCUS指把化石燃料燃烧产生的CO2进行收集并将其安全地存储于地质结构层中或进行资源化利用的工程,是“碳中和”的重要实现途径之一[8-9].CCUS相关技术成为世界范围内的研发热点,中国也对此展开了广泛的试验和探索[10].2009年,华能集团于上海石洞口第二电厂启动了10万t/年CO2捕集示范项目,成为世界上规模最大的燃煤电厂烟气CO2捕集装置之一; 河北新奥集团开发的“微藻生物吸碳技术”,实现了微藻吸收煤化工CO2工艺,年吸收110 t CO2; 江苏中科金龙环保新材料有限公司CO2制备化工产品和原料技术示范以酒精厂捕集的CO2为原料,制备保温材料和可降解塑料等产品,年CO2利用量达8 000 t.然而,绝大部分CCUS技术仍处于试验、示范阶段,难以在全球范围内开展大规模应用[10].主要问题有两方面:一是CCUS技术尚未成熟,难以确保封存的CO2不会逸出并长期稳定; 二是项目成本居高不下,严重影响了现有技术的推广应用[9,11-12].有别于传统的CCUS技术,生物炭在技术门槛、资源消耗、经济成本等方面要求较低,是一种更易实施的固碳减排途径[13-14].大量研究[14-18]表明,生物炭具有巨大的固碳减排潜力,在减缓气候变化方面具有重要作用.
-
生物炭是废弃生物质或有机体在限氧条件下热裂解生成的固态物质,具有较高的pH、有机碳含量和阳离子交换量,并且具有丰富的孔隙、复杂的官能团以及巨大的比表面积[19-20].生物炭的研究源自科学家在南美洲亚马孙地区对一种名为“Terra Preta”的黑色肥沃土壤的研究[21-23].生物炭的相关报道在21世纪初数量较少,但随着科学研究的不断深入及其生态环境功能的不断挖掘,生物炭在作物增产、污染治理、固碳减排等方面的作用被广泛关注[17,24-26].随着我国“双碳”目标的提出,生物炭制备技术及其固碳效应将受到越来越多的关注.
-
生物炭基于自身的碳素稳定性、对土壤有机碳分解的潜在抑制能力以及热解过程中副产物的循环利用,具备直接或间接地减少CO2的排放以及增加土壤碳汇的功能[17].对农业源的温室气体而言,生物炭可以通过吸附作用、改变土壤理化性质和影响微生物活动等过程发挥减排作用.总的来讲,与其他传统固碳减排方式相比,生物炭优势显著:
-
1)生物炭固碳潜力巨大.有研究报道生物炭在全球范围内具备约3.4~6.3 Pg CO2-eq的温室气体减排潜力[17].
-
2)生物炭的固碳效果相对稳定,而传统的土壤固碳方式存在固碳量下降风险.例如:林草生态系统带来的碳汇可能会由于火灾、放牧等扰动而被损耗[27-28]; 免耕农业在恢复耕作后可能减少积累的碳储量[29]; 地质封存等CCUS项目亦存在泄露风险[30].
-
3)生物炭的原料来源十分广泛,几乎所有废弃生物质均可用于制备生物炭,因此生物炭制备技术具备废弃生物质高效处置与碳汇提升的协调效益[31].例如:农林废弃物中常见的秸秆、树枝、畜禽粪便等[32-34]; 食品工业中用于制糖的甘蔗渣、甜菜渣等[35-37]; 污染水体中的污泥和藻类也可以经过预处理并制成生物炭[34,38-39].
-
4)常见的生物炭多来自有机废弃生物质,其原料成本相对低廉.
-
尽管热解过程中的生产成本在现阶段增加了生物炭产业推广的难度,但是生物炭的多领域应用具备在未来提升其市场竞争力的潜能[14].比如,对农田而言,生物炭可以实现农业增产提质从而助力粮食安全并增加农户收入[40].
-
1 生物炭农田土壤固碳研究进展
-
1.1 生物炭对农田土壤有机碳含量的影响
-
土壤有机碳(SOC)储量和植被碳库之和是大气碳库的3倍,其中地下2 m内土壤有机碳库约为2 400 Pg(以C计),因此SOC在调节大气二氧化碳浓度方面具有重要的作用[41-42].大量研究表明农田施用生物炭可有效增加SOC,但结果存在一定的异质性[43-44].整合分析作为一种集成并定量分析多个研究从而获得普适结论的方法,可以帮助揭示生物炭施用对SOC的影响.多项整合分析表明[15-16,45-51],生物炭对SOC存在积极影响,施炭后SOC的增幅范围约在14.3%~101.6%(表1).不同研究之间存在差异可能跟搜集的数据量有关,如肖婧等[46]数据量最少,仅为28对,其整合分析所得结果的异质性也最大,生物炭施用后SOC的增幅在14.3%~71.5%之间,而Gross等[51]涉及的数据最丰富,其研究中的差异也较小.此外,根据表1结果可知,生物炭性质、土壤性质、气候区、试验条件、田间管理等因素均可能影响施炭后SOC的增量[15,47-51].尽管有研究表明生物炭可能会引起土壤有机质激发效应[52],但长期来看生物炭对SOC发挥了积极作用,如Sun等[53]开展了8年的田间试验发现,长期施用生物炭增加了SOC含量,这可能原因是生物炭增加了SOC的稳定性且激发效应随着施用年限的增加而减弱[54].
-
生物炭的施用可直接增加SOC,且在持续多年施用下对农作物稳产提质[55-56],表明农田可作为生物炭的巨大储库.前人研究表明,生物炭通过参与土壤中的生物地球化学循环,不仅具备“固碳”作用,还具有“增汇”和“稳汇”的潜力.
-
1)生物炭可促进土壤中植物源的有机碳输入.Dai等[57] 研究表明,施用生物炭后植物生物量平均提高16.0%,这大大增加了地上部的凋落物来源; 而且有研究表明生物炭可加速凋落物的分解,从而促进植物残体向SOC的转化[58-59].对植物地下部而言,生物炭可以促进根系生长并刺激根系分泌物的产生,进而增加了植物的根际碳输入[60-61].Xiang等[60]整合分析表明施炭后作物的根际生物量增加了26%~37%; Sun等[62]试验结果发现生物炭普遍促进了根系分泌物的产生,与对照相比最高增幅可达564.0%.
-
注:NA表示无数据或数据不可获取; 95%CI表示效应值的置信区间.
-
2)生物炭增加了微生物源的SOC输入.微生物残体碳贡献了约50%的土壤有机碳库[63],生物炭提供了微生物生长所需的养分和基质,刺激了体内周转的同化过程并增加了微生物生物量,进而促进了SOC在土壤中的积累[64-66].Zhang等[64]研究发现施炭量在66.7~112.5 t·hm-2时微生物残体碳增加了3.0%~5.0%,但生物炭没有显著改变真菌残体碳和细菌残体碳的比例.有研究[65]报道,施加玉米秸秆炭显著提高了真菌和细菌的磷脂脂肪酸(PLFA),但降低了氨基糖在有机碳中的占比,表明微生物残体碳的增加是生物炭对SOC贡献的途径之一.
-
3)生物炭还可降低SOC的分解速率,这可能与土壤团聚体有密切关系.已有多项整合分析证实了生物炭施用促进了土壤团聚体的形成,团聚体的平均质量直径可提升8.2%~16.4%[67-69].土壤团聚体增加且减缓SOC分解的潜在机制可能是:首先,生物炭增加了SOC在土壤团聚体形成过程中的胶结作用,而团聚体结构加强了SOC与微生物的物理隔绝从而降低SOC的分解[70-71]; 其次,生物炭也会增大土壤的静电斥力和范德华引力,提高土壤的内部黏结和抗碎裂性[72]并稳定了土壤团聚体结构,从微生物角度而言,生物炭可能会刺激微生物产生菌丝和胶结物质,有助于土壤团聚体结构的加速形成和稳定[65]; 最后,有研究报道施炭后矿物结合态SOC含量显著增加,表明生物炭还可通过土壤矿物途径增加对SOC的保护[73-74].
-
1.2 生物炭在土壤中稳定性的研究进展
-
尽管生物炭施用到土壤后的分解过程十分缓慢,但其并非是绝对稳定的惰性物质,随着施用时间的增加,终会参与生物地球化学循环且发生分解.多项试验研究表明[52,75-78](表2),生物炭施用后的日均分解速率在0.000 1%~0.040 7%之间.生物炭输入到土壤后的稳定性的差异可能跟土壤条件、生物炭性质等因素有关(表2).其中生物炭的热解温度是最为直接的影响因素,高温炭的矿化速率普遍比低温炭低[52,78].原料也决定了生物炭的分解速率,一般而言,木炭通常比秸秆炭、污泥炭更难分解[79-80].热解温度和原料可能通过影响生物炭的元素组成(摩尔比)进而影响其稳定性.Spokas等[81]定量分析了生物炭稳定性与O/C的关系,结果表明,O/C小于0.2的生物炭通常是最稳定的,其半衰期在1 000年以上; 而O/C大于0.6的生物炭半衰期则不足100年.此外,H/C可用于评价生物炭中芳环结构的热化学改变程度,较低的H/C意味着较高的熔融芳香环含量和较高的稳定性[79].同时,施用年限的长短也会影响生物炭的稳定性,有研究表明施用年限越长,土壤中留存的生物炭越稳定.Wang等[80] 基于24篇文献中128对数据开展的整合分析表明,生物炭施入后的初始分解速率约为0.021%~0.033% d-1,但在施用3年后,生物炭分解极为缓慢.
-
不同研究中生物炭的分解速率差异较大,且同一研究中的分解速率也存在年际变化,难以具体估算生物炭施用年限的固碳量.因此,IPCC给出了生物炭施入土壤后的固碳量参考计算公式[82]:
-
其中:BCmineral表示生物炭施入土壤100年后的残留碳量; 表示施炭量(t·hm-2·a-1); 表示生物炭的有机碳含量,单位是t(C)·t-1; 表示100年尺度上生物炭的存留系数,单位是t(C-eq)·t-1; n 表示使用的第n种生物炭.
-
1.3 生物炭土壤固碳研究的热点与发展趋势
-
在Web of Science中以检索式TS=biochar AND TS=(“soil organic carbon” OR “soil carbon” OR “carbon sequestration”)NOT TS=incubation进行检索,通过CiteSpace对检索结果进行关键词共现研究.除检索语句包含的词汇外,出现频次最高的有black carbon(黑炭)、charcoal(木炭)、bioma(生物质)、nitrogen(氮)、 greenhouse gas emission(温室气体排放)、pyrolysis(热解)、stability(稳定性).对关键词进行聚类分析,共出现四大主题:稳定性、废弃物与污染治理、热解过程、土壤有机质与农业生产(图1).
-
首先,生物炭自身的稳定性是研究热点之一,如biochar stability(生物炭稳定性)和decomposition(分解)等分别是第一和第二的高频词.此外,enzyme activity(酶活性)、community structure(群落结构)等土壤微生物相关方向也受到了广泛关注,这表明聚类主题所包括的研究范围较广,是一个综合性较强的聚类.而CO2、soil nutrient(土壤养分)、soil contamination(土壤污染)、sewage sludge biochar(污水污泥生物炭)等关键词的出现,也在一定程度上表明土壤有机碳增加是提升土壤生态系统服务功能的核心.
-
其次,废弃物处理与污染治理也是重要的关键词聚类结果.这一主题的关键词包括surface charge(表面电荷)、heavy metal(重金属)、brownfield soil(污染土壤)、waste(废弃物)、water(水体)、crop residue(作物残茬)、soil carbon(土壤碳)等,说明生物炭对土壤有机碳的增加与其污染治理功能相关.有研究表明,通过提升土壤有机碳含量,可在一定程度上钝化重金属含量.
-
图1 生物炭土壤固碳研究的关键词聚类图谱
-
Fig.1 Keywords cluster map of SOC sequestration under biochar application
-
再次,生物炭的热解过程受到了广泛关注.pyrolysis(热解)、temperature(温度)、biochar property(生物炭性质)、lignocellulosic bioma(木质纤维素)、bioenergy(生物质能)、CO2 capture(碳捕集)为这一主题的主要关键词,这一结果表明原料、温度等生产条件对生物炭固碳功能的重要性,以及将生物炭生产过程中的气态和液态副产物作为实现CCUS与循环加工的可能性.
-
最后,土壤有机质与农业生产也形成了聚类.该主题聚焦于生物炭的固碳功能,所包括的关键词主要有dynamics(动态)、soil organic matter(土壤有机质)、microbial activity(微生物活动)、management(管理)、agricultural soil(农业土壤)、soil degradation(土壤退化).土壤有机碳是生物炭实现固碳功能的主要途径,微生物和土壤酶活动是土壤碳循环的重要参与者.当前生物炭的主要应用场景为农田,避免施炭所具备的负面影响需配合合理的管理措施.此外,生物炭的施用不仅影响了土壤的碳循环,nutrient(养分)、nitrogen mineralization(氮矿化)等关键词的出现表明生物炭对其他养分的周转也存在影响.
-
突现词结果显示,2007至2016年突现强度最大的是charcoal(木炭)、black carbon(黑炭)、char(炭),可见此前研究中对生物炭的命名并不统一(图2).carbon sequestration(固碳)、bioenergy(生物质能)、fast pyrolysis(快速热解)、activated carbon(活性炭)、sorption(吸附)、oxidation(氧化)等突现词说明早期对生物炭的固碳研究聚焦于热解工艺、生物质能源以及生物炭的污染治理作用.2018至2022年的突现词主要包括temperature sensitivity(温度敏感性)、soil property(土壤性质)、physicochemical property(理化性质)、water retention(持水力),表明研究热点逐渐向生物炭固碳带来的生态功能发展,探究生物炭带来的土壤有机碳改变如何影响土壤水力特征、微生物活动等土壤活动与功能(图2).
-
2 生物炭农田减排研究进展
-
2.1 生物炭农田应用对土壤温室气体排放的影响
-
大量研究已表明,生物炭具备减少土壤CH4和N2O排放的潜力.Huang等[83]报道化肥配施生物炭可减少菜地土壤CH4排放2.36 kg·hm-2.Nan等[84]在稻田开展了7年的观测试验,与对照相比,生物炭还田可降低稻田14.8%~46.7%的CH4排放,而秸秆还田则增加了111%~950.5%的CH4排放.Yang等[85]研究了不同生物炭施用量(0、10、20和40 t·hm-2)对早、晚稻种植系统CH4排放的影响,发现10 t·hm-2生物炭处理下早稻CH4平均降低了26%,而20 t·hm-2和40 t·hm-2的生物炭施用量则分别使CH4排放增加102%和200%; 对晚稻而言,所有施炭量水平均可降低CH4排放通量,且低施用量(10 t·hm-2)减排效果最好,降幅达27.2%.Nan等[86]对比了2.8 t·hm-2和22.5 t·hm-2施用量下新鲜和老化秸秆生物炭对水稻土CH4排放的影响,发现施用2.8 t·hm-2和22.5 t·hm-2新鲜生物炭分别显著增加了15.0%和36.0%的CH4排放; 老化生物炭处理组中,2.8 t·hm-2施用量对CH4排放无显著影响,而22.5 t·hm-2施用量显著减少了101%~169%的CH4排放.
-
图2 生物炭固碳研究关键词突现图谱
-
Fig.2 Burst keywords map of SOC sequestration under biochar application
-
对N2O而言,Sial等[87]对比了不同温度下(300、450和600℃)制成的胡桃壳生物炭对北方小麦-玉米种植土壤N2O排放的影响,结果表明三种生物炭均显著降低土壤N2O排放,且热解温度越高降低效果越好,最大降幅达64.9%.Ginebra等[88]分别向农田施加11 t·hm-2的木渣、牛粪和鸡粪为原料制成的生物炭,发现仅木渣和牛粪生物炭对N2O排放有显著抑制作用(降幅分别为50.0%和23.0%),鸡粪相比对照增加了24.0%的N2O排放.对不同作物而言,He等[89]在宜兴开展了持续10年的生物炭对稻麦轮作系统N2O排放的研究,长期生物炭处理显著降低了水稻季N2O累积排放量.
-
除了开展大量室内模拟实验及大田试验外,也有学者利用整合分析研究了不同因素影响下生物炭对土壤CH4排放的影响(表3).Wu等[90]基于60项研究中的209对独立结果开展了整合分析,结果表明生物炭改良土壤的CH4排放量平均降低幅度为9.3%.Shakoor等[91]对50项研究中的600对独立试验结果的整合分析亦显示生物炭施加降低了农田37.0%的CH4排放.也有少量研究表明在特定的试验条件下生物炭施用对CH4排放无显著影响[92-93],Zhang等[94]利用从129项研究中共648对独立研究数据进行整合分析,结果显示生物炭仅在施用后第1个月对土壤CH4减排有促进作用,平均降幅为33.0%.
-
本文亦列举了主要的生物炭对N2O影响的整合分析结果(表3).Wu等[90]整合分析结果显示施用生物炭可平均减少18.7%的N2O排放量.Borchard等[95]从88篇研究中提取了608对独立研究结果进行整合分析,结果表明生物炭施用使N2O排放显著下降了38.0%.相似地,Zhang等[94]的整合分析结果表明生物炭施用使N2O的排放得到显著抑制,降幅在27.9%~47.9%.Cayuela等[96]搜集2007—2013年间30项研究成果的261对数据进行整合分析,发现生物炭减少了54.0%的土壤N2O排放,在所有整合分析结果中最高.然而也有研究表明生物炭有增加土壤N2O排放的风险,如Feng等[97]的整合分析结果显示生物炭对土壤N2O排放有显著的促进作用,增幅为4.9%~23.5%.此外,也有部分整合分析结果显示生物炭施加并未对N2O排放造成显著影响[98-100].
-
2.2 生物炭对农田温室气体排放的影响因素与机制
-
2.2.1 生物炭减缓农田CH4排放
-
土壤CH4主要由产甲烷菌在厌氧条件下分解土壤有机物质(如乙酸、甲基化合物等)产生,多数CH4会被甲烷氧化菌直接消耗,少部分气体排放至大气[101].一般认为,生物炭可通过改变土壤中可利用有机物的含量或土壤的理化性质影响产甲烷菌与甲烷氧化菌的活性,进而对CH4的生成和消耗产生影响[102].根据表3,目前研究关注生物炭影响CH4排放的因素主要分为三类,包括土壤因素(如pH、土壤质地、SOC、DOC(可溶性有机碳))、生物质因素(如原料、热解温度、老化时间、施用量、生物炭pH、C/N)和人为管理因素(如肥料类型及施加量、作物类型、试验类型、作物持续时间).
-
注:NA表示无数据或数据不可获取; 95%CI表示效应值的置信区间.
-
1)对于土壤因素,土壤质地与pH的改变对CH4排放影响较大.生物质能增加土壤通气性,破坏适宜产甲烷菌生长的厌氧条件,从而抑制CH4的产生.有研究表明因稻秆生物质的微孔数与孔径均比竹子生物质大,因而更有利于增加土壤通气并具备更好的CH4抑制作用[101].产甲烷菌生长最适pH值范围在6.8~7.2之间,温度、pH、氧气浓度的急剧变化均容易导致该厌氧菌种工作的停止,而生物质呈碱性,其“石灰效应”使土壤pH上升,抑制了产甲烷菌的活动[103],整合分析结果表明土壤pH<6时施加生物炭才能显著降低土壤CH4排放[94].
-
2)对生物质性质而言,Wang等[104]发现新鲜生物质中DOC含量较高,对产甲烷菌的繁殖有利,因而在短期内造成CH4大量排放.Wu等[105]发现,施用生物质3年后土壤甲烷氧化菌/产甲烷菌比值高于对照,证明生物质老化增加了甲烷氧化菌的丰度,从而减少了CH4的总排放量.土壤CH4排放对生物炭的响应也受原料、C/N、pH和热解温度的影响,Ji等[99]整合分析显示以木质和草本原料制成的生物质显著降低了CH4排放,而畜禽粪便原料则增加21%的CH4排放; 高C/N值(>300)、pH(>8.5)、热解温度下的生物质减排效果更好,这得益于生物质更稳定的性质和更丰富孔结构,以及对土壤pH的提升作用[106].
-
3)对于人为管理因素,氮肥施加与否会对生物质减少CH4排放的效果产生影响.研究表明累积CH4排放在施加氮肥和不施加处理之间表现出明显的差异,施加氮肥后,硝态氮可能作为稻田土壤中甲烷氧化菌的优先氮源,增强其对CH4的氧化[99,106-107].此外,有报道指出生物质施加对水稻种植季CH4排放的抑制效果通常高于麦季,这可能是因为生物质处理后作物产量和生物量的提高更有利于O2向水稻根际迁移,促进了CH4氧化[107].
-
2.2.2 生物炭减缓农田N2O排放
-
土壤N2O排放主要源于土壤中氮素的硝化和反硝化过程.硝化作用由含有amoA和amoB基因的氨氧化细菌以及含有nxrA的亚硝化细菌驱动,反硝化过程则由含有亚硝酸盐还原酶(nirK和nirS)及一氧化二氮还原酶(nosZ)等特定酶系的一系列反硝化细菌驱动.与影响CH4排放的机制相似,生物炭减缓土壤N2O排放受到土壤性质、生物炭性质和人为管理措施等因素影响.
-
1)对土壤因素而言,生物炭基于多孔结构和大比表面积的特性,能够增强土壤通气,抑制反硝化路径中N2O的排放,因而对于黏性土壤具有更好的减排效果[107].此外,土壤阳离子交换量(CEC)较低的土壤施用生物炭可能抑制N2O排放的效果更好[100],生物炭施加后会增加CEC并促进NH+4/NO-3的吸附和土壤N固定[108],减少硝化/反硝化的底物,并抑制氮循环酶(如脲酶、蛋白酶)的活性[109].相反地,在土壤C/N高(>10)的情况下,施用生物炭可能通过改变土壤碳氮比刺激土壤微生物活性,导致农田土壤更高的氮氧化物排放[110].
-
2)对生物炭性质而言,Chen等[111]研究发现生物炭热解温度和添加量越高,含有nosZ的微生物丰度和基因表达水平越高,而含有nirS和nirK基因的微生物生长繁殖则受到抑制,表明添加生物炭能够通过削弱硝酸盐和亚硝酸盐向N2O转化并促进N2O转化为N2来减少土壤N2O 的排放.生物炭老化对土壤N2O排放影响较大,Feng等[97]发现生物炭对土壤N2O排放的减缓作用由于老化而降低了15.0%,老化生物炭有利于加速硝化作用产生N2O,同时削弱N2O的还原作用.
-
3)人为管理因素中,氮肥是生物炭影响N2O排放最关键因素.Wu等[90]研究氮肥施加配合施用生物炭对农田N2O排放的影响,发现N2O排放总是在施肥后达到峰值,在氮肥处理下,生物炭处理组的N2O排放量显著低于对照,降幅在19.5%~26.3%之间,说明生物炭在高施氮农田生态系统中具有较好的缓解N2O排放的潜力.
-
2.3 生物炭减排研究热点与趋势
-
在Web of Science对生物炭减排主题进行检索,构建的检索式为TS=(biochar AND soil AND(CO2 OR N2O OR CH4 OR greenhouse gas))NOT TS=(incubation),使用CiteSpace软件对检索结果进行关键词共现研究.高频词汇有bioma(生物质)、nitrogen(氮)、yield(产量)、organic matter(有机质)、growth(生长)、pyrolysis(热解).对关键词进行聚类分析,共出现四大主题:生物炭农业减排潜力、生物炭的减排机制、土壤改良与污染控制、农业提质增产与废弃物资源化利用(图3).
-
图3 生物炭减排研究关键词聚类图谱
-
Fig.3 Keywords cluster map of researches on GHGs emission reduction under biochar application
-
首先是生物炭农业减排潜力,这一主题的关键词包括CO2 emission(二氧化碳排放)、CH4 emission(甲烷排放)、N2O emission(氧化亚氮排放)、gaseous emission(气体排放)、agriculture(农业)、emission factor(排放因子)、paddy soil(水稻土)、cropping system(种植系统)等.农业是重要的温室气体源,而生物炭可以缓解农业源的GHGs(温室气体)排放,其施用于农田后对各类GHGs的减排效果(减排量的估算)是近年的研究热点.
-
其次,生物炭的减排机制也形成了聚类.该主题重点关注生物炭减排作用的发生机制,主要包含adsorption(吸附)、oxidation(氧化)、aromatic hydrocarbon(芳香烃)、dissolved organic matter(可溶性有机质)、microbial functional gene(微生物功能基因)、bacterium(细菌)、stabilization(稳定)、chemical(化学)、acid(酸性)等关键词.生物炭减排机制可分为宏观和微观两个层次,相关研究主要围绕调整土壤通气条件、酸碱度、有机质含量、微生物及相关功能基因的丰度等方面开展.
-
在土壤改良与污染控制的主题中,contaminated soil(污染土壤)、desorption(解吸)、bioavailability(生物有效性)、toxicity(毒性)、cation exchange capacity(阳离子交换量)、cadmium(镉)、degradation(退化)成为高频关键词.生物炭不仅减排潜力巨大,同时还具有增加土壤肥力、改善土壤结构等作用,因而其对受污染(如重金属污染)或退化严重土壤的改良效果也备受研究者关注.
-
最后一个主题是农业提质增产与废弃物资源化利用.该主题以yield(产量)、rice straw(水稻秸秆)、crop(作物)、bioenergy(生物能)、gasification(气化)、crop production system(作物生产系统)、global change(全球变化)为高频共现关键词.发展绿色农业、气候智慧型农业是应对全球变化的必然选择.当前农业废弃物资源(如秸秆、畜禽粪便等)利用不充分导致资源浪费甚至额外的GHGs排放,生物炭产业发展不仅有利于解决废弃生物质的处置问题,生物质燃料、生物炭基肥等附加产品还带来额外的减排,生物炭施用的增产效果也为农业提质增产提供了新途径和新视角.
-
突现词结果显示,早期研究主要关注生物炭的固碳效果和生物质能源的使用,如2007—2016年突增的charcoal(木炭)、manure(粪便)、black carbon(黑炭)、carbon sequestration(固碳)、biofuel(生物燃料)等关键词(图4).2010年出现emission(排放)、N2O等突现词,此阶段生物炭农业应用的减排效果开始得到关注.随着研究的深入,大尺度分析方法于2017年被引入该主题的研究中用来定量评估生物炭减排的普适性效果,如meta-analysis(整合分析).2018年起,community composition(群落组成)、use efficiency(利用效率)、temperature sensitivity(温度敏感性)等关键词陆续出现,说明研究开始关注生物炭的微观减排机制,同时在不同的土壤、气候、管理措施(氮肥施用)等因素下来研究生物炭的减排效果和影响因素.
-
图4 生物炭减排研究关键词突现图谱
-
Fig.4 Burst keywords map of researches on GHGs emission reduction under biochar application
-
3 生物炭参与碳交易面临的机遇与挑战
-
3.1 生物炭参与碳交易的机遇
-
“双碳”目标的提出表明了中国气候治理的宏伟决心,如何在限期内完成这一目标是未来高质量可持续发展和绿色低碳转型的关键.碳交易是基于温室气体(GHGs)排放指标的买卖行为,其通过引入市场机制来解决全球气候变化问题,充分利用碳交易推动GHGs减排是实现“碳中和”的重要环节.生物炭因优异的减排增汇、提质增产能力而具有参与农业自愿减排碳交易明显潜力[112].
-
以生物质热解多联产技术(Biomass Intermediate Pyrolysis Poly-generation,BIPP)为例,该技术将生物质转化为固液燃料、肥料、燃气、改良剂等多种产物并加以利用[113],有望成为中国生物炭产业发展的主要形式.Yang等[114]设计了一套BIPP并对其农田应用直接带来的碳汇、生物燃料替代化石燃料、降低化肥需求、间接的农田温室气体减排等效应进行了计量,仅利用中国33%的可持续利用的作物残茬,每年就会减少高达54.27 Mt CO2-eq排放; 若将所有可利用的生物质都用于生产生物炭和生物燃料,到2030年每单位GDP的碳排放量将减少61%[115].综上,生物炭的固碳减排效益具备可行的技术基础和巨大的理论潜力,生物炭参与我国碳交易前景十分可观.
-
国际上对生物炭农田应用的固碳减排作用关注较早.美国《清洁能源与安全法案》提出了农业和林业减排抵消计划,鼓励生物炭等农林业生态产品参与碳市场.早在2009年,英国就已关注到生物炭参与碳交易的可能性并将其纳入立法讨论范围内.欧盟最早启动碳交易市场并且运行机制最为成熟,农户通过生物炭应用等固碳减排措施带来的碳减排量进行市场交易能很大程度抵消减排成本.2021年,欧盟议会提出要设立“碳关税”(https://oeil.secure.europarl.europa.eu/oeil/popups/ficheprocedure.do?reference=2020/2043(INI)&l=en),意味着生物炭固碳减排项目产生的环境效益将体现在产品价格中,进一步助力农民增收.目前中国农业减排项目仅能通过清洁发展机制项目(CDM)和国家核证自愿减排项目(CCER)进行国际上和国内的碳减排量交易.2022年4月,《中共中央国务院关于加快建设全国统一大市场的意见》正式发布,意见提出要建设全国统一的碳排放权交易市场,实行统一规范的行业标准、交易监管机制.总的看来,生物炭参与中国碳交易的政策体系已大体具备,相关计量标准与交易细则陆续出台后,生物炭自愿减排碳交易市场有望蓬勃发展.
-
3.2 生物炭参与碳交易的挑战
-
碳交易的市场机制将在中国绿色、低碳产业转型的道路上发挥不可或缺的激励与约束作用,而积极参与碳交易是农业领域实现“碳中和”的必然选择.生物炭产业的发展能有效解决中国耕地肥力不足、农业废弃物深度利用效率低等现实困境,生物炭显著的减排增汇效果亦赋予其广泛参与碳交易的基础条件.然而生物炭参与碳交易仍需解决碳排放计量与核算方法不够完善、碳交易平台未能得到有效开发和利用等问题.
-
农业碳减排量与碳汇的精确计量与核算是碳交易顺利进行的前提条件.中国不同省份地区农业发展程度与特色产业、土壤环境和气候条件等存在较大差异,因此农业碳排放量的核算较为复杂,仍然缺乏统一的核算方法和标准[116].目前仅有3个农业相关的计量方法学在国家发展改革委员会备案[117].一般而言,生物炭农田应用碳减排计量方法学的开发包括项目边界和基线、关键排放源与碳汇、项目泄漏等[118],涉及生产、运输、施用和计量等多个环节.生物炭生产过程造成的碳排放量因原料、生产工艺的不同有很大区别,农田温室气体排放系数也可能由于目标耕地的性质及气候的差异而异质性较大,因此生物炭农田应用减排增汇的精确量化存在一定难度.
-
中国碳交易市场尚处于起步阶段,特别是农业领域参与碳交易程度不高.联合国气候变化框架公约网站(https://cdm.unfccc.int/Projects/projsearch.html)显示,截至2022年4月25日,中国已注册3 876个CDM项目,其中与农业直接相关的仅有35个.目前,中国经核实公示CCER审定项目2 852个,林业碳汇、生物质能、避免甲烷排放等与农业高度相关的项目数为615个,占比仅达21%.中国小农户个体居多且较为分散,所产生的碳减排量难以准确计量并规模化参与碳交易[119],并且中国碳交易市场整体平均碳价维持在较低水平,仅23元/t左右,与当前欧盟约100欧元/t的碳价相去甚远.此外,生物炭制备成本本身较高,若农户产生的碳减排量参与碳交易获得的收益难以覆盖生产成本,无疑将打击生物炭农业应用项目参与碳交易的积极性.
-
3.3 展望与建议
-
农业废弃物以生物炭形式利用能直接增加土壤碳库,并且通过改变土壤理化性质和微生物群落结构使CH4和N2O排放减少并新增SOC,带来可观的减排增汇量.生物炭还能通过增加土壤肥力起到增产作用,并且不会引起病虫害,相比直接还田、好氧堆肥、厌氧发酵和焚烧发电等利用方式可以更全面地发挥废弃物的资源属性,负面效应少.总的来说,生物炭参与碳交易的前景广阔,对中国农业绿色可持续发展意义重大.
-
对于生物炭农田应用固碳减排项目参与碳交易所面临的问题,目前可以通过以下手段来积极应对.第一,未来需要因地制宜地利用区域特色农业废弃物,继续深入研究生物炭制备过程和固碳减排结果异质性的机理,最终建立针对不同地区生物炭推荐施用参考目录(如制备工艺、农田施用量等),为政府制定相关行业规范和性质测定标准提供科学依据.第二,应进一步开发和完善生物炭固碳减排方法学,建立科学完善的碳排与碳汇核算体系,由政府引导并联合各大科研院所建立生物炭的固碳减排大数据平台,为各地获取更有效的应用技术及更精确的排放因子提供数据基础.第三,应在农业集约化过程中配合推动生物炭应用产业化,使生物质碳减排量计量标准化、生物炭参与自愿减排碳交易规模化,并推动生物炭农业固碳减排项目碳减排量交易试点工作,鼓励企业优先认购农业碳减排量,以良好的经济效益带动农业生产者参与积极性.第四,政府和社会组织应当增加相应技术培训,设立合理的补偿与约束措施,加强绿色生产等概念的宣传,提高农业生产者向低碳农业转型的积极性.
-
参考文献
-
[1] IPCC.Climate change 2021:the physical science basis [R].Cambridge,UK,and New York,USA:Cambridge University Press,2021
-
[2] Reay D S,Davidson E A,Smith K A,et al.Global agriculture and nitrous oxide emissions[J].Nature Climate Change,2012,2(6):410-416
-
[3] Montzka S A,Dlugokencky E J,Butler J H.Non-CO2 greenhouse gases and climate change[J].Nature,2011,476(7358):43-50
-
[4] 李长生,肖向明,Frolking S,等.中国农田的温室气体排放[J].第四纪研究,2003,23(5):493-503;LI Changsheng,XIAO Xiangming,Frolking S,et al.Greenhouse gas emissions from croplands of China[J].Quaternary Sciences,2003,23(5):493-503
-
[5] 谭秋成.中国农业温室气体排放:现状及挑战[J].中国人口·资源与环境,2011,21(10):69-75;TAN Qiucheng.Greenhouse gas emission in China's agriculture:situation and challenge[J].China Population,Resources and Environment,2011,21(10):69-75
-
[6] 国家应对气候变化战略研究和国际合作中心.中国气候变化第三次国家信息通报 [R/OL].[2022-01-08].https://tnc.ccchina.org.cn/Detail.aspx?newsId=73250&TId=203
-
[7] 全球碳捕集与封存研究院.全球碳捕集与封存现状 [R].2021
-
[8] 陈文颖,吴宗鑫,王伟中.CO2收集封存战略及其对我国远期减缓CO2排放的潜在作用[J].环境科学,2007,28(6):1178-1182;CHEN Wenying,WU Zongxin,WANG Weizhong.Carbon capture and storage(CCS)and its potential role to mitigate carbon emission in China[J].Environmental Science,2007,28(6):1178-1182
-
[9] 王键,杨剑,王中原,等.全球碳捕集与封存发展现状及未来趋势[J].环境工程,2012,30(4):118-120;WANG Jian,YANG Jian,WANG Zhongyuan,et al.The present status and future trends of global carbon capture and storage[J].Environmental Engineering,2012,30(4):118-120
-
[10] 仲平,彭斯震,贾莉,等.中国碳捕集、利用与封存技术研发与示范[J].中国人口·资源与环境,2011,21(12):41-45;ZHONG Ping,PENG Sizhen,JIA Li,et al.Development of carbon capture,utilization and storage(CCUS)technology in China[J].China Population,Resources and Environment,2011,21(12):41-45
-
[11] 韩文科,杨玉峰,苗韧,等.全球碳捕集与封存(CCS)技术的最新进展[J].宏观经济研究,2009(12):22-23,43;HAN Wenke,YANG Yufeng,MIAO Ren,et al.The latest development of global carbon capture and storage(CCS)technology[J].Macroeconomics,2009(12):22-23,43
-
[12] 仲平,彭斯震,张九天,等.发达国家碳捕集、利用与封存技术及其启示[J].中国人口·资源与环境,2012,22(4):25-28;ZHONG Ping,PENG Sizhen,ZHANG Jiutian,et al.Carbon capture utilization and storage technology development in developed countries and inspirations to China[J].China Population,Resources and Environment,2012,22(4):25-28
-
[13] Smith P,Davis S J,Creutzig F,et al.Biophysical and economic limits to negative CO2 emissions[J].Nature Climate Change,2016,6(1):42-50
-
[14] Smith P.Soil carbon sequestration and biochar as negative emission technologies[J].Global Change Biology,2016,22(3):1315-1324
-
[15] Liu S W,Zhang Y J,Zong Y J,et al.Response of soil carbon dioxide fluxes,soil organic carbon and microbial biomass carbon to biochar amendment:a meta-analysis[J].GCB Bioenergy,2016,8(2):392-406
-
[16] 刘成,刘晓雨,张旭辉,等.基于整合分析方法评价我国生物质炭施用的增产与固碳减排效果[J].农业环境科学学报,2019,38(3):696-706;LIU Cheng,LIU Xiaoyu,ZHANG Xuhui,et al.Evaluating the effects of biochar amendment on crop yield and soil carbon sequestration and greenhouse gas emission using meta-analysis[J].Journal of Agro-Environment Science,2019,38(3):696-706
-
[17] Lehmann J,Cowie A,Masiello C A,et al.Biochar in climate change mitigation[J].Nature Geoscience,2021,14(12):883-892
-
[18] Qambrani N A,Rahman M M,Won S,et al.Biochar properties and eco-friendly applications for climate change mitigation,waste management,and wastewater treatment:a review[J].Renewable and Sustainable Energy Reviews,2017,79:255-273
-
[19] Lehmann J.Bio-energy in the black[J].Frontiers in Ecology and the Environment,2007,5(7):381-387
-
[20] Wang J L,Wang S Z.Preparation,modification and environmental application of biochar:a review[J].Journal of Cleaner Production,2019,227:1002-1022
-
[21] Marris E.Putting the carbon back:black is the new green[J].Nature,2006,442(7103):624-626
-
[22] 袁金华,徐仁扣.生物质炭的性质及其对土壤环境功能影响的研究进展[J].生态环境学报,2011,20(4):779-785;YUAN Jinhua,XU Renkou.Progress of the research on the properties of biochars and their influence on soil environmental functions[J].Ecology and Environmental Sciences,2011,20(4):779-785
-
[23] Chen W F,Meng J,Han X R,et al.Past,present,and future of biochar[J].Biochar,2019(1):75-87
-
[24] Tan Z X,Lin C,Ji X Y,et al.Returning biochar to fields:a review[J].Applied Soil Ecology,2017,116:1-11
-
[25] Liang L P,Xi F F,Tan W S,et al.Review of organic and inorganic pollutants removal by biochar and biochar-based composites[J].Biochar,2021,3(3):255-281
-
[26] Schmidt H P,Kammann C,Hagemann N,et al.Biochar in agriculture:a systematic review of 26 global meta-analyses [J].Global Change Biology Bioenergy,2021,13(11):1708-1730
-
[27] He Y H,Zhou X H,Jiang L L,et al.Effects of biochar application on soil greenhouse gas fluxes:a meta-analysis[J].GCB Bioenergy,2017,9(4):743-755
-
[28] Zhang M,Li X B,Wang H,et al.Comprehensive analysis of grazing intensity impacts soil organic carbon:a case study in typical steppe of Inner Mongolia,China[J].Applied Soil Ecology,2018,129:1-12
-
[29] Denis T,Gabriela C I,Gerard J.Long term impact of different tillage systems on carbon pools and stocks,soil bulk density,aggregation and nutrients:a field meta-analysis[J].Catena,2021,199:105102
-
[30] 李琦,蔡博峰,陈帆,等.二氧化碳地质封存的环境风险评价方法研究综述[J].环境工程,2019,37(2):13-21;LI Qi,CAI Bofeng,CHEN Fan,et al.Review of environmental risk assessment methods for carbon dioxide geological storage[J].Environmental Engineering,2019,37(2):13-21
-
[31] 王怀臣,冯雷雨,陈银广.废物资源化制备生物质炭及其应用的研究进展[J].化工进展,2012,31(4):907-914;WANG Huaichen,FENG Leiyu,CHEN Yinguang.Advances in biochar production from wastes and its applications[J].Chemical Industry and Engineering Progress,2012,31(4):907-914
-
[32] Lu K P,Yang X,Gielen G,et al.Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals(Cd,Cu,Pb and Zn)in contaminated soil[J].Journal of Environmental Management,2017,186(Pt 2):285-292
-
[33] Zhang X X,Zhang P Z,Yuan X R,et al.Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar[J].Bioresource Technology,2020,296:122318
-
[34] Zhao L,Cao X D,Mašek O,et al.Heterogeneity of biochar properties as a function of feedstock sources and production temperatures[J].Journal of Hazardous Materials,2013,256/257:1-9
-
[35] Ippolito J A,Cui L Q,Kammann C,et al.Feedstock choice,pyrolysis temperature and type influence biochar characteristics:a comprehensive meta-data analysis review[J].Biochar,2020(4):421-438
-
[36] Inyang M,Gao B,Pullammanappallil P,et al.Biochar from anaerobically digested sugarcane bagasse[J].Bioresource Technology,2010,101(22):8868-8872
-
[37] Yao Y,Gao B,Inyang M,et al.Biochar derived from anaerobically digested sugar beet tailings:characterization and phosphate removal potential[J].Bioresource Technology,2011,102(10):6273-6278
-
[38] Sun F F,Lu S G.Biochars improve aggregate stability,water retention,and pore-space properties of clayey soil[J].Journal of Plant Nutrition and Soil Science,2014,177(1):26-33
-
[39] Bird M I,Wurster C M,de Paula Silva P H,et al.Algal biochar:production and properties[J].Bioresource Technology,2011,102(2):1886-1891
-
[40] Lehmann J.A handful of carbon[J].Nature,2007,447(7141):143-144
-
[41] Eglinton T I,Galy V V,Hemingway J D,et al.Climate control on terrestrial biospheric carbon turnover[J].Proceedings of the National Academy of Sciences of the United States of America,2021,118(8):e2011585118
-
[42] Cotrufo M F,Ranalli M,Haddix M,et al.Soil carbon storage informed by particulate and mineral-associated organic matter[J].Nature Geoscience,2019,12(12):1-6
-
[43] Lu W W,Ding W X,Zhang J H,et al.Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil:a negative priming effect[J].Soil Biology and Biochemistry,2014,76:12-21
-
[44] Han L F,Yang Y,Xia X H,et al.Biochar's stability and effect on the content,composition of soil organic carbon[J].Geoderma,2020,364:114184
-
[45] 史雷,张然,马龙,等.小麦产量及土壤性状对施用生物质炭的量化响应[J].植物营养与肥料学报,2020,26(7):1273-1283;SHI Lei,ZHANG Ran,MA Long,et al.Quantitative response of wheat yield and soil properties to biochar amendment in China[J].Plant Nutrition and Fertilizer Science,2020,26(7):1273-1283
-
[46] 肖婧,王传杰,黄敏,等.生物质炭对设施大棚土壤性质与果蔬产量影响的整合分析[J].植物营养与肥料学报,2018,24(1):228-236;XIAO Jing,WANG Chuanjie,HUANG Min,et al.Meta-analysis of biochar application effects on soil fertility and yields of fruit and vegetables in greenhouse[J].Journal of Plant Nutrition and Fertilizers,2018,24(1):228-236
-
[47] Bai X X,Huang Y W,Ren W,et al.Responses of soil carbon sequestration to climate-smart agriculture practices:a meta-analysis[J].Global Change Biology,2019,25(8):2591-2606
-
[48] Chagas J K M,Figueiredo C C,Ramos M L G.Biochar increases soil carbon pools:evidence from a global meta-analysis[J].Journal of Environmental Management,2022,305:114403
-
[49] Singh H,Northup B K,Rice C W,et al.Biochar applications influence soil physical and chemical properties,microbial diversity,and crop productivity:a meta-analysis[J].Biochar,2022,4(1):103-119
-
[50] Xu H,Cai A D,Wu D,et al.Effects of biochar application on crop productivity,soil carbon sequestration,and global warming potential controlled by biochar C∶N ratio and soil pH:a global meta-analysis[J].Soil & Tillage Research,2021,213:105125
-
[51] Gross A,Bromm T,Glaser B.Soil organic carbon sequestration after biochar application:a global meta-analysis[J].Agronomy,2021,11(12):2474
-
[52] Zimmerman A R,Gao B,Ahn M Y.Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils[J].Soil Biology and Biochemistry,2011,43(6):1169-1179
-
[53] Sun J L,Li H B,Zhang D S,et al.Long-term biochar application governs the molecular compositions and decomposition of organic matter in paddy soil[J].GCB Bioenergy,2021,13(12):1939-1953
-
[54] Singh B P,Cowie A L.Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil[J].Scientific Reports,2014,4:3687
-
[55] 魏永霞,朱畑豫,刘慧.连年施加生物炭对黑土区土壤改良与玉米产量的影响[J].农业机械学报,2022,53(1):291-301;WEI Yongxia,ZHU Tianyu,LIU Hui.Effects of successive application of biochar on soil improvement and maize yield of black soil region[J].Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):291-301
-
[56] Bi Y C,Cai S Y,Wang Y,et al.Assessing the viability of soil successive straw biochar amendment based on a five-year column trial with six different soils:views from crop production,carbon sequestration and net ecosystem economic benefits[J].Journal of Environmental Management,2019,245:173-186
-
[57] Dai Y H,Zheng H,Jiang Z X,et al.Combined effects of biochar properties and soil conditions on plant growth:a meta-analysis[J].Science of the Total Environment,2020,713:136635
-
[58] Saarnio S,Kettunen R.Biochar addition affected nutrient leaching and litter decomposition rates in boreal sandy soils[J].Agricultural and Food Science,2020,29(4):287-296
-
[59] Minamino Y,Fujitake N,Suzuki T,et al.Effect of biochar addition on leaf-litter decomposition at soil surface during three years in a warm-temperate secondary deciduous forest,Japan[J].Scientific Reports,2019,9(1):16961
-
[60] Xiang Y Z,Deng Q,Duan H L,et al.Effects of biochar application on root traits:a meta-analysis[J].GCB Bioenergy,2017,9(10):1563-1572
-
[61] Akhter A,Hage-Ahmed K,Soja G,et al.Compost and biochar alter mycorrhization,tomato root exudation,and development of Fusarium oxysporum f.sp.lycopersici[J].Frontiers in Plant Science,2015,6:529
-
[62] Sun C X,Wang D,Shen X B,et al.Effects of biochar,compost and straw input on root exudation of maize(Zea mays L.):from function to morphology[J].Agriculture,Ecosystems & Environment,2020,297:106952
-
[63] Liang C,Amelung W,Lehmann J,et al.Quantitative assessment of microbial necromass contribution to soil organic matter[J].Global Change Biology,2019,25(11):3578-3590
-
[64] Zhang Y,Xie H,Wang F,et al.Effects of biochar incorporation on soil viable and necromass carbon in the luvisol soil[J].Soil Use and Management,2022,38(1):318-330
-
[65] Zhang Y L,Xie H T,Wang F P,et al.Variations of soil viable and necromass carbon affected by biochar incorporation frequencies[J].Archives of Agronomy and Soil Science,2021:1-12.DOI:10.1080/03650340.2021.1915484
-
[66] 梁超,朱雪峰.土壤微生物碳泵储碳机制概论[J].中国科学(地球科学),2021,51(5):680-695;LIANG Chao,ZHU Xuefeng.Introduction to carbon storage mechanism of soil microbial carbon pump[J].Scientia Sinica(Terrae),2021,51(5):680-695
-
[67] Wu W A,Han J Y,Gu Y N,et al.Impact of biochar amendment on soil hydrological properties and crop water use efficiency:a global meta-analysis and structural equation model[J].GCB Bioenergy,2022,14(6):657-668
-
[68] Omondi M O,Xia X,Nahayo A,et al.Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data[J].Geoderma,2016,274:28-34
-
[69] Islam M U,Jiang F H,Guo Z C,et al.Does biochar application improve soil aggregation?A meta-analysis[J].Soil and Tillage Research,2021,209:104926
-
[70] Bachmann J,Guggenberger G,Baumgartl T,et al.Physical carbon-sequestration mechanisms under special consideration of soil wettability[J].Journal of Plant Nutrition and Soil Science,2008,171(1):14-26
-
[71] Lehmann J,Hansel C M,Kaiser C,et al.Persistence of soil organic carbon caused by functional complexity[J].Nature Geoscience,2020,13(8):529-534
-
[72] Hu F N,Xu C Y,Ma R T,et al.Biochar application driven change in soil internal forces improves aggregate stability:based on a two-year field study[J].Geoderma,2021,403:115276
-
[73] 高诚祥,刘玉学,汪玉瑛,等.生物炭的稳定性及其对矿物改性的响应机制研究进展[J].应用生态学报,2019,30(9):3245-3251;GAO Chengxiang,LIU Yuxue,WANG Yuying,et al.Stability of biochar and the mechanisms underlying its response to mineral modification:a review[J].Chinese Journal of Applied Ecology,2019,30(9):3245-3251
-
[74] Plaza C,Giannetta B,Fernández J M,et al.Response of different soil organic matter pools to biochar and organic fertilizers[J].Agriculture,Ecosystems & Environment,2016,225:150-159
-
[75] Luo Y,Durenkamp M,De Nobili M,et al.Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH[J].Soil Biology and Biochemistry,2011,43(11):2304-2314
-
[76] Hilscher A,Heister K,Siewert C,et al.Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil[J].Organic Geochemistry,2009,40(3):332-342
-
[77] Keith A,Singh B,Singh B P.Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil[J].Environmental Science & Technology,2011,45(22):9611-9618
-
[78] Bruun S,Jensen E S,Jensen L S.Microbial mineralization and assimilation of black carbon:dependency on degree of thermal alteration[J].Organic Geochemistry,2008,39(7):839-845
-
[79] Leng L J,Huang H J.An overview of the effect of pyrolysis process parameters on biochar stability[J].Bioresource Technology,2018,270:627-642
-
[80] Wang J Y,Xiong Z Q,Kuzyakov Y.Biochar stability in soil:meta-analysis of decomposition and priming effects[J].GCB Bioenergy,2016,8(3):512-523
-
[81] Spokas K A.Review of the stability of biochar in soils:predictability of O∶C molar ratios[J].Carbon Management,2010,1(2):289-303
-
[82] Task Force on National Greenhouse Gas Inventories(TFI).The refinement to the 2006 IPCC guidelines for national greenhouse gas inventories[R].IPCC,2019:5-13
-
[83] Huang R,Wang Z F,Xiao Y,et al.Increases in temperature response to CO2 emissions in biochar-amended vegetable field soil[J].Environmental Science and Pollution Research,2022:1-11.DOI:10.1007/s11356-022-19011-6
-
[84] Nan Q,Fang C X,Cheng L Q,et al.Elevation of NO-3-N from biochar amendment facilitates mitigating paddy CH4 emission stably over seven years[J].Environmental Pollution,2022,295:118707
-
[85] Yang X,Vancov T,Penuelas J,et al.Optimal biochar application rates for mitigating global warming and increasing rice yield in a subtropical paddy field[J].Experimental Agriculture,2022:1-17.DOI:10.1017/S0014479721000259
-
[86] Nan Q,Hu S L,Qin Y,et al.Methane oxidation activity inhibition via high amount aged biochar application in paddy soil[J].Science of the Total Environment,2021,796:149050
-
[87] Sial T A,Shaheen S M,Lan Z L,et al.Addition of walnut shells biochar to alkaline arable soil caused contradictory effects on CO2 and N2O emissions,nutrients availability,and enzymes activity[J].Chemosphere,2022,293:133476
-
[88] Ginebra M,Muñoz C,Calvelo-Pereira R,et al.Biochar impacts on soil chemical properties,greenhouse gas emissions and forage productivity:a field experiment[J].Science of the Total Environment,2022,806:150465
-
[89] He L L,Xu Y X,Li J,et al.Biochar mitigated more N-related global warming potential in rice season than that in wheat season:an investigation from ten-year biochar-amended rice-wheat cropping system of China[J].Science of the Total Environment,2022,821:153344
-
[90] Wu Z,Zhang X,Dong Y B,et al.Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system:six-year field observation and meta-analysis[J].Agricultural and Forest Meteorology,2019,278:107625
-
[91] Shakoor A,Dar A A,Arif M S,et al.Do soil conservation practices exceed their relevance as a countermeasure to greenhouse gases emissions and increase crop productivity in agriculture?[J].Science of the Total Environment,2022,805:150337
-
[92] Khan M N,Huang J,Shah A,et al.Mitigation of greenhouse gas emissions from a red acidic soil by using magnesium-modified wheat straw biochar[J].Environmental Research,2022,203:111879
-
[93] Shin J,Park D,Hong S,et al.Influence of activated biochar pellet fertilizer application on greenhouse gas emissions and carbon sequestration in rice(Oryza sativa L.)production[J].Environmental Pollution,2021,285:117457
-
[94] Zhang Q,Xiao J,Xue J H,et al.Quantifying the effects of biochar application on greenhouse gas emissions from agricultural soils:a global meta-analysis[J].Sustainability,2020,12(8):3436
-
[95] Borchard N,Schirrmann M,Cayuela M L,et al.Biochar,soil and land-use interactions that reduce nitrate leaching and N2O emissions:a meta-analysis[J].Science of the Total Environment,2019,651:2354-2364
-
[96] Cayuela M L,Jeffery S,van Zwieten L.The molar H∶Corg ratio of biochar is a key factor in mitigating N2O emissions from soil[J].Agriculture,Ecosystems & Environment,2015,202:135-138
-
[97] Feng Y Y,Feng Y F,Liu Q,et al.How does biochar aging affect NH3 volatilization and GHGs emissions from agricultural soils?[J].Environmental Pollution,2022,294:118598
-
[98] Shakoor A,Shahzad S M,Chatterjee N,et al.Nitrous oxide emission from agricultural soils:application of animal manure or biochar?A global meta-analysis[J].Journal of Environmental Management,2021,285:112170
-
[99] Ji C,Jin Y G,Li C,et al.Variation in soil methane release or uptake responses to biochar amendment:a separate meta-analysis[J].Ecosystems,2018,21(8):1692-1705
-
[100] Liu Q,Zhang Y H,Liu B J,et al.How does biochar influence soil N cycle?A meta-analysis[J].Plant and Soil,2018,426(1/2):211-225
-
[101] Liu Y X,Yang M,Wu Y M,et al.Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar[J].Journal of Soils and Sediments,2011,11(6):930-939
-
[102] Feng Y Z,Xu Y P,Yu Y C,et al.Mechanisms of biochar decreasing methane emission from Chinese paddy soils[J].Soil Biology and Biochemistry,2012,46:80-88
-
[103] Qin X B,Li Y E,Wang H,et al.Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system:a four-year case study in South China[J].Science of the Total Environment,2016,569/570:1390-1401
-
[104] Wang J Y,Pan X J,Liu Y L,et al.Effects of biochar amendment in two soils on greenhouse gas emissions and crop production[J].Plant and Soil,2012,360(1/2):287-298
-
[105] Wu Z,Zhang X,Dong Y B,et al.Microbial explanations for field-aged biochar mitigating greenhouse gas emissions during a rice-growing season[J].Environmental Science and Pollution Research,2018,25(31):31307-31317
-
[106] Qi L,Ma Z L,Chang S X,et al.Biochar decreases methanogenic archaea abundance and methane emissions in a flooded paddy soil[J].Science of the Total Environment,2021,752:141958
-
[107] Hu A,Lu Y H.The differential effects of ammonium and nitrate on methanotrophs in rice field soil[J].Soil Biology and Biochemistry,2015,85:31-38
-
[108] He T T,Yun F,Liu T,et al.Differentiated mechanisms of biochar-and straw-induced greenhouse gas emissions in tobacco fields[J].Applied Soil Ecology,2021,166:103996
-
[109] Pu Y L,Zhu B,Dong Z X,et al.Soil N2O and NOx emissions are directly linked with N-cycling enzymatic activities[J].Applied Soil Ecology,2019,139:15-24
-
[110] Hilber I,Blum F,Leifeld J,et al.Quantitative determination of PAHs in biochar:a prerequisite to ensure its quality and safe application[J].Journal of Agricultural and Food Chemistry,2012,60(12):3042-3050
-
[111] Chen G H,Zhang Z R,Zhang Z Y,et al.Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures[J].Science of the Total Environment,2018,615:1547-1556
-
[112] Hansson A,Haikola S,Fridahl M,et al.Biochar as multi-purpose sustainable technology:experiences from projects in Tanzania[J].Environment,Development and Sustainability,2021,23(4):5182-5214
-
[113] Vamvuka D.Bio-oil,solid and gaseous biofuels from biomass pyrolysis processes:an overview[J].International Journal of Energy Research,2011,35(10):835-862
-
[114] Yang Q,Zhou H W,Bartocci P,et al.Prospective contributions of biomass pyrolysis to China's 2050 carbon reduction and renewable energy goals[J].Nature Communications,2021,12:1698
-
[115] Shan Y L,Liu J H,Liu Z,et al.New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors[J].Applied Energy,2016,184:742-750
-
[116] 何可,汪昊,张俊飚.“双碳”目标下的农业转型路径:从市场中来到“市场”中去[J].华中农业大学学报(社会科学版),2022(1):1-9;HE Ke,WANG Hao,ZHANG Junbiao.Agricultural transformation path with respect to the target of carbon peak and carbon neutrality:from the market to the “market”[J].Journal of Huazhong Agricultural University(Social Sciences Edition),2022(1):1-9
-
[117] 程琨,潘根兴.农业与碳中和[J].科学,2021,73(6):8-12,4;CHENG Kun,PAN Genxing.Agriculture and carbon neutrality[J].Science,2021,73(6):8-12,4
-
[118] 孙建飞,郑聚锋,程琨,等.面向自愿减排碳交易的生物质炭基肥固碳减排计量方法研究[J].中国农业科学,2018,51(23):4470-4484;SUN Jianfei,ZHENG Jufeng,CHENG Kun,et al.Quantifying carbon sink by biochar compound fertilizer project for domestic voluntary carbon trading in agriculture[J].Scientia Agricultura Sinica,2018,51(23):4470-4484
-
[119] 何可,李凡略,畅华仪.构建低碳共同体:地方性共识与规模养猪户农业碳交易参与——以农村沼气CCER碳交易项目为例[J].中国农村观察,2021(5):71-91;HE Ke,LI Fanlue,CHANG Huayi.Building a low carbon community:local consensus and the participation of large—scale pig breeders in agricultural carbon trading[J].China Rural Survey,2021(5):71-91
-
摘要
温室气体(GHGs)过量排放造成的全球气候变化问题受到广泛关注,农业活动是第二大温室气体排放源,减少农业温室气体排放刻不容缓.生物炭由生物质在高温限氧条件下热解炭化获得,其性质稳定、孔径丰富、富含芳香碳,因而减排增汇效果优异,具有参与农业自愿减排碳交易的显著潜力.然而生物炭固碳减排效果异质性大,影响因素复杂多样,因此有必要对其减排效应、影响因素和研究进展进行归纳总结.本文系统梳理了国内外与生物炭固碳减排相关的室内、大田研究和整合分析研究,同时采用CiteSpace软件进行可视化分析,探究了该领域的发展趋势和研究热点.基于国内外碳交易市场发展特点与程度以及相应配套政策总结了生物炭参与碳交易面临的机遇和挑战,并提出了相应的解决手段,为生物炭固碳减排研究的开展和生物炭农田应用项目参与碳交易提供了科学指导和建议.
Abstract
Global climate change caused by excessive greenhouse gas (GHG) emissions has been widely concerned.Agricultural activities are the second largest source of GHGs emissions,so it is urgent to reduce agricultural GHGs emissions.Biochar,which has stable properties,abundant aromatic carbon and pores,is produced by pyrolysis of biomass under high temperature and limited oxygen conditions.The effect of biochar amendment on GHGs mitigation and soil carbon sequestration is excellent,and biochar application has the potential to participate in China's ongoing carbon trading of voluntary emission reduction (VER).However,the factors affecting the carbon sequestration and GHGs emission reduction effect of biochar are complicated,so it is necessary to systematically summarize the mitigation effect,influencing factors and research progress of biochar.This paper reviewed researches on the GHGs emission reduction and carbon sequestration effect of biochar through pot and field experiment as well as meta-analysis research.At the same time,CiteSpace software was used for visual analysis to explore the research hotspots and development trends in this field.The opportunities and challenges faced by biochar application projects participating in carbon trading were summarized based on the characteristics of domestic and foreign carbon trading market development and corresponding supporting policies.Corresponding solutions were also provided in this study,which offered scientific guidance and useful reference for the development of carbon sequestration and GHGs emission reduction research of biochar and the successful participation of biochar application projects in carbon trading.
Keywords
biochar ; soil carbon pool ; greenhouse gases ; methane ; nitrous oxide ; carbon trading