en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杨梦远,女,硕士生,研究方向为农田温室气体排放及减缓对策.18752065321@163.com;

孙丽英(通信作者),女,博士,讲师,研究方向为农田温室气体排放及减缓对策.sunliying@nuist.edu.cn

中图分类号:S511;S181

文献标识码:A

DOI:10.13878/j.cnki.jnuist.2022.04.009

参考文献 1
OCDE,FAO.OECD-FAO agricultural outlook 2015 [M].Paris:OECD,2015:18-32
参考文献 2
Bouwman A F.Exchange of greenhouse gases between terrestrial ecosystem and the atmosphere [J].Soils and Greenhouse Effect,1990:61-127
参考文献 3
巨晓棠,谷保静.我国农田氮肥施用现状、问题及趋势[J].植物营养与肥料学报,2014,20(4):783-795;JU Xiaotang,GU Baojing.Status-quo,problem and trend of nitrogen fertilization in China [J].Journal of Plant Nutrition and Fertilizer,2014,20(4):783-795
参考文献 4
Sun H J,Zhang H L,Powlson D,et al.Rice production,nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine [J].Field Crops Research,2015,173:1-7
参考文献 5
Pan B B,Lam S K,Mosier A,et al.Ammonia volatilization from synthetic fertilizers and its mitigation strategies:a global synthesis [J].Agriculture,Ecosystems & Environment,2016,232:283-289
参考文献 6
Xu S J,Zhou S N,Ma S L,et al.Manipulation of nitrogen leaching from tea field soil using a Trichoderma viride biofertilizer [J].Environmental Science and Pollution Research,2017,24(36):27833-27842
参考文献 7
Wang J Y,Xiong Z Q,Yan X Y.Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China [J].Atmospheric Environment,2011,45(38):6923-6929
参考文献 8
Stocker T F.Climate change 2013:the physical science basis:Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change [M].Cambridge,UK:Cambridge University Press,2014
参考文献 9
Ravishankara A R,Daniel J S,Portmann R W.Nitrous oxide(N2O):the dominant ozone-depleting substance emitted in the 21st century [J].Science,2009,326(5949):123-125
参考文献 10
Behera S N,Sharma M,Aneja V P,et al.Ammonia in the atmosphere:a review on emission sources,atmospheric chemistry and deposition on terrestrial bodies [J].Environmental Science and Pollution Research,2013,20(11):8092-8131
参考文献 11
Zhou C,Ma Z Y,Zhu L,et al.Rhizobacterial strain bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance [J].International Journal of Molecular Sciences,2016,17(6):976
参考文献 12
Galloway J N,Aber J D,Erisman J W,et al.The nitrogen cascade [J].BioScience,2003,53(4):341-356
参考文献 13
王璠,徐圣君,马双龙,等.解淀粉芽孢杆菌菌剂对雪菜生长和土壤氧化亚氮排放的影响[J].中国农学通报,2015,31(13):229-235;WANG Fan,XU Shengjun,MA Shuanglong,et al.Effect of Bacillus amyloliquefaciens biofertilizer on Brassica juncea var.multiceps growth and N2O emission from soil [J].Chinese Agricultural Science Bulletin,2015,31(13):229-235
参考文献 14
Wu S H,Zhuang G Q,Bai Z H,et al.Mitigation of nitrous oxide emissions from acidic soils by Bacillus amyloliquefaciens,a plant growth-promoting bacterium[J].Global Change Biology,2018,24(6):2352-2365
参考文献 15
王振.复合微生物菌剂对水稻生长发育影响研究[D].沈阳:沈阳农业大学,2017:28-29;WANG Zhen.Effects of compound microbial agents on the growth and development of rice [D].Shenyang:Shenyang Agricultural University,2017:28-29
参考文献 16
庞强强,蔡兴来,周曼,等.微生物菌肥对设施白菜生长、品质和土壤酶活性的影响[J].热带农业科学,2018,38(4):20-23;PANG Qiangqiang,CAI Xinglai,ZHOU Man,et al.Effects of microbial fertilizer on the growth,quality and soil enzyme activities of pakchoi in the solar greenhouse[J].Chinese Journal of Tropical Agriculture,2018,38(4):20-23
参考文献 17
苑志强.生物菌肥对膜下滴灌马铃薯及土壤特性的影响[D].呼和浩特:内蒙古农业大学,2019:39-41;YUAN Zhiqiang.Effects of biological fertilizer on potato underwater and characteristics of soil under drip irrigation[D].Hohhot:Inner Mongolia Agricultural University,2019:39-41
参考文献 18
Giri B,Prasad R,Wu Q S,et al.Biofertilizers for sustainable agriculture and environment[M].Cham:Springer International Publishing,2019
参考文献 19
汪霞.微生物菌剂对碱性土壤氨挥发的控制及其机理研究[D].合肥:中国科学技术大学,2017:19-20;WANG Xia.The effects and mechanism of biofertilizer on mitigation the ammonia volatilization from the alkaline soil [D].Hefei:University of Science and Technology of China,2017:19-20
参考文献 20
Xu S J,Feng S G,Sun H S,et al.Linking N2O emissions from biofertilizer-amended soil of tea plantations to the abundance and structure of N2O-reducing microbial communities[J].Environmental Science & Technology,2018,52(19):11338-11345
参考文献 21
Higa T,Wididana G N.The concept and theories of effective microorganisms[C]//Proceedings of the First International Conference on Kyusei Nature Farming,1991:118-124
参考文献 22
葛诚.微生物肥料生产及其产业化[M].北京:化学工业出版社,2007:143-150;GE Cheng.Production and industrialization of microbial fertilizer[M].Beijing:Chemical Industry Press,2007,143-150
参考文献 23
李照全,阎世江.生物菌肥加微量元素防治番茄病害试验研究初报[J].天津农林科技,2019(4):14-15,21;LI Zhaoquan,YAN Shijiang.Preliminary study on control of tomato diseases by biological bacterial fertilizer and trace elements [J].Science and Technology of Tianjin Agriculture and Forestry,2019(4):14-15,21
参考文献 24
颜晓元.土壤氮循环实验研究方法[M].北京:科学出版社,2020;YAN Xiaoyuan.Experimental methods for nitrogen cycling in soils [M].Beijing:Science Press,2020
参考文献 25
Zhao M,Tian Y H,Ma Y C,et al.Mitigating gaseous nitrogen emissions intensity from a Chinese rice cropping system through an improved management practice aimed to close the yield gap[J].Agriculture,Ecosystems & Environment,2015,203:36-45
参考文献 26
Khan M Y,Haque M M,Molla A H,et al.Antioxidant compounds and minerals in tomatoes by Trichoderma-enriched biofertilizer and their relationship with the soil environments[J].Journal of Integrative Agriculture,2017,16(3):691-703
参考文献 27
李青梅,陆秀君,张敏硕,等.微生物菌剂和生根粉对甜瓜产量和土壤生态效应的影响[J].北方园艺,2020(7):100-105;LI Qingmei,LU Xiujun,ZHANG Minshuo,et al.Effects of microbial inoculants and rooting powder on muskmelon yield and soil ecological effect [J].Northern Horticulture,2020(7):100-105
参考文献 28
宋以玲,于建,陈士更,等.化肥减量配施生物有机肥对油菜生长及土壤微生物和酶活性影响[J].水土保持学报,2018,32(1):352-360;SONG Yiling,YU Jian,CHEN Shigeng,et al.Effects of reduced chemical fertilizer with application of bio-organic fertilizer on rape growth,microorganism and enzymes activities in soil[J].Journal of Soil and Water Conservation,2018,32(1):352-360
参考文献 29
李博,张曼,熊正琴.施用氮肥与生物炭对菜地净综合温室效应的影响[J].中国科技论文,2014,9(9):1057-1062;LI Bo,ZHANG Man,XIONG Zhengqin.Effects of nitrogen fertilizer and biochar on net global warming potential of intensively managed vegetable fields[J].China Sciencepaper,2014,9(9):1057-1062
参考文献 30
Firestone M K,Davidson E A.Microbiological basis of NO and N2O production and consumption in soil[C]//Andreae M O,Schimel D S.Exchange of trace gases between terrestrial ecosystem and the atmosphere.Chichester,UK:John Wiley & Sons Ltd.,1989:7-21
参考文献 31
Zhang W F,Dou Z X,He P,et al.New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(21):8375-8380
参考文献 32
王晓朋,胡坤,童晨晓,等.猪粪与菌剂配施对山地红壤温室气体排放的影响[J].福建农业学报,2019,34(11):1323-1331;WANG Xiaopeng,HU Kun,TONG Chenxiao,et al.Effect of bacterial agent added to fertilizer on greenhouse gas emissions of mountain red soil[J].Fujian Journal of Agricultural Sciences,2019,34(11):1323-1331
参考文献 33
Šimek M,Jíšová L,Hopkins D W.What is the so-called optimum pH for denitrification in soil?[J].Soil Biology and Biochemistry,2002,34(9):1227-1234
参考文献 34
Zhou S,Zeng X,Xu Z,et al.Paenibacillus polymyxa biofertilizer application in a tea plantation reduces soil N2O by changing denitrifier communities[J].Canadian Journal of Microbiology,2020,66(3):214-227
参考文献 35
Shan L N,He Y F,Chen J,et al.Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin,China[J].Journal of Environmental Sciences,2015,38:14-23
参考文献 36
许云翔,何莉莉,陈金媛,等.生物炭对农田土壤氨挥发的影响机制研究进展[J].应用生态学报,2020,31(12):4312-4320;XU Yunxiang,HE Lili,CHEN Jinyuan,et al.Effects of biochar on ammonia volatilization from farmland soil:a review[J].Chinese Journal of Applied Ecology,2020,31(12):4312-4320
目录contents

    摘要

    为了明确尿素配施生物菌剂对设施菜地活性气态氮(N2O和NH3)排放以及蔬菜产量的影响,分别采用静态暗箱-气相色谱法和通气室-氨捕获法对设施菜地N2O和NH3排放进行了原位观测.试验设置3个处理:空白处理(CK)、施用尿素(U)、尿素与生物菌剂配施(EM).结果表明:与CK处理相比,U处理蔬菜产量、N2O排放量、NH3排放量、活性气态氮累积排放量和活性气态氮排放强度分别增加了3.65%、43.40%、16.90%、38.60%和35.71%.与CK处理相比,EM处理蔬菜产量、N2O排放量、NH3排放量、活性气态氮累积排放量和活性气态氮排放强度分别增加了22.28%(P<0.05)、103.46%(P<0.05)、45.07%(P<0.05)、92.80%(P<0.05)和57.14%(P<0.05),差异显著.考虑EM处理显著增加了活性气态氮,并由此带来的环境损益,生物菌剂在菜地中的施用还需要进一步评估.

    Abstract

    In order to clarify the effects of microbial agents combined with urea on reactive gaseous nitrogen (N2O and NH3) emissions and vegetable yield,a field experiment was designed to simultaneously measure N2O and NH3 fluxes using the static opaque chamber-gas chromatograph and ventilation chamber-ammonia capture method,respectively.Three following field treatments were set up including control (CK),urea (U),and urea combined with microbial agents (EM).The results showed that compared with CK treatment,the U treatment increased vegetable yield as well as reactive gaseous nitrogen emissions,though the increase trends were not significant.However,the combination of microbial agents with urea markedly enhanced both the vegetable yield and reactive gaseous nitrogen emissions (P<0.05),specifically,the vegetable yield,cumulative N2O emission,cumulative NH3 emission,reactive gaseous nitrogen emission and emission intensity were significantly increased by 22.28%,103.46%,45.07%,92.80% and 57.14%,respectively.It can be concluded that,besides the economic benefits by increasing vegetable yield,the enhancement of reactive gaseous nitrogen emissions and the resulting environmental losses need to be carefully evaluated for application of microbial agents in vegetable fields.

    关键词

    生物菌剂N2ONH3蔬菜产量菜地土壤

  • 0 引言

  • 我国是世界上最大的蔬菜生产国和消费国,蔬菜种植面积约为3亿亩,占我国农业播种面积的11.6%[1].与其他大田种植的作物相比,我国蔬菜生产集约化程度高、复种指数高、氮肥用量远超于推荐施肥量,导致氮肥利用率越来越低,大量氮素以氨挥发[2-3]和氧化亚氮排放等[4-6]形式损失.我国菜地施肥引起的直接N2O排放量约为66.95Gg(以N计),约占我国农田总直接N2O排放量的21.4%[7].而N2O是影响全球气候变化的重要温室气体之一,在100年时间尺度上,其增温潜势是CO2的298倍[8-9].而NH3作为一种重要的活性氮,也是大气中唯一的碱性气体,在酸雨的形成、雾霾天气以及大气悬浮颗粒物构成等方面有着重要的作用[10].由于施用氮肥所引起的氨挥发超过人为源氨排放的30%[11],排放的NH3将会再次沉降到陆地或水体系统,不仅对生物多样性、环境质量造成威胁,而且还会通过硝化反硝化作用导致N2O的排放[12].因此,寻找减缓设施菜地N2O和NH3排放的方法,对保证蔬菜生产和降低环境污染有十分重要的意义.

  • 近年来,微生物菌剂的增产减排效果越来越受到学者们的关注[13-14].微生物菌剂属于微生物肥料中的一种,指目标微生物(有效菌)经过工业化生产扩繁后加工制成的活菌制剂,在农业生产中,微生物菌剂通过所含微生物的生命活动及代谢产物,能够直接或间接提高植物根际养分的可利用性而发挥其促生作用,并提高氮肥利用率使作物增产[15-18].因此,施用微生物菌剂是保证作物产量,同时控制N2O和NH3排放的新措施.施用微生物菌剂在碱性土壤上能减缓NH3的排放已得到初步验证[19],也有研究证明其能减缓酸性土壤N2O的排放[14,20].但同时研究微生物菌剂对设施菜地N2O和NH3排放的研究还比较匮乏.

  • 因此,本研究针对我国蔬菜种植面积不断扩大,氮肥用量不断增加,氮肥利用率较低,较高的NH3、N2O的排放等情况,提出利用微生物菌剂配施氮肥来提高蔬菜产量和减缓NH3、N2O的排放.从可持续发展的角度评价微生物菌剂在设施菜地系统中的适用性,以期为设施菜地减缓N2O和NH3排放提供一定的理论依据.

  • 1 材料与方法

  • 1.1 试验地点与材料

  • 试验地点位于江苏省南京市浦浩生态园(118°41′E,32°14′N),该地区位于长江中下游,是亚热带季风气候区域,气候温暖湿润,无霜期较长,适宜蔬菜生长.试验土壤(0~15cm)的基本理化性质:pH 6.5、全氮质量分数为1.4g/kg、有机碳质量分数为24.1g/kg.

  • 本研究采用的微生物菌剂为EM菌剂(Effective Microorganisms),是一种常用的复合生物菌剂,主要由光合菌群、乳酸菌群、酵母菌群、革兰氏阳性放线菌群、发酵系的丝状菌群等组成,多项研究证明其具有改善土壤结构、提高作物产量和防治病虫害的作用,且其价格低廉,对环境也无毒害[21-23].试验从2018年06月10日种植小白菜开始,至2018年07月21日收获小白菜结束.

  • 1.2 试验设计

  • 试验共设置空白处理(CK)、只施用尿素(U)、尿素与微生物菌剂配施(EM)3个处理,每个处理设置3个重复.按照当地农民施肥习惯,尿素(以N计)、过磷酸钙(以P2O5计)、硫酸钾(以K2O计)的施用量都为200kg/hm2;EM菌剂的施用量为45kg/hm2.播种前,将尿素、过磷酸钙和硫酸钾作为基肥施入土壤,使其与土壤充分混匀.EM菌剂稀释200倍后用喷壶均匀喷洒于土壤表面.由于小白菜的生长期较短,所以整个生长期不追施其他肥料.

  • 1.3 样品采集与分析

  • 利用静态暗箱-气相色谱法测定N2O的排放通量.采样箱与采样底座均为不透明的PVC板制成.播种前在每个小区内安装方形采样底座(底座外侧带有水槽),采气时,将45cm×45cm×50cm的采样箱体安装在采样底座上,并将水槽灌满水,用于密封.密封后的0、10、20和30min时分别用20mL注射器收集4个气体样品.使用气相色谱仪(Agilent 7890B)在12h内分析N2O体积分数.采样时间通常在08:00—10:00,采样频率为每周采集一次样品,施肥之后加密采样每2天采集一次样品,持续1周左右.

  • 采用气相色谱仪测定N2O体积分数,根据每组样品中0、10、20和30min时所采集的4个样品N2O体积分数和采样时间的直线回归方程的斜率求得N2O排放通量.N2O排放通量的计算公式如下:

  • F=ρ×h×dcdt×273273+θ
    (1)
  • 式中:F为N2O-N的排放通量(mg/(m2·h));ρ为标准状态下的N2O-N气体密度(mg/(m3·h));h为采样箱高度(m);dc/dt为采样箱内的气体体积分数变化率;θ为采样过程中采样箱内的平均温度(℃).

  • 蔬菜播种之后,采用通气室-氨捕获法[24]测定氨挥发.将上下无底、由PVC制成的圆柱形采样筒插入到土壤中(直径15cm、高25cm).在收集NH3的时候,采样筒里放置2片浸泡过甘油磷酸的海绵,上层海绵主要是吸收空气中的NH3,避免下层海绵被污染;下层海绵主要用来吸收土壤挥发出的NH3,即样品.每2天更换一次海绵,直至施肥处理氨挥发与空白处理无差异.用于捕获氨的海绵被更换之后立即用300mL 1mol/L的氯化钾浸提,用靛酚蓝比色法(日立,UV-2900)测定浸提液中NH4+质量分数.NH3挥发速率的计算公式如下:

  • vNH3-N,i=MiDi×S×10-2
    (2)
  • 其中: vNH3-N,i为第i次采样的NH3挥发速率,单位为kg/(hm2·d),以N计;Mi为单个通气法装置第i次采样测得的NH3-N,mg;S为圆形管的横截面积,m2;Di为第i次采样的NH3挥发历时,h;10-2为单位转换系数.

  • NH3挥发累积量计算公式如下:

  • P=12i=1n vNH3-N,i+vNH3-N,i-1Ti-Ti-1
    (3)
  • 其中:P为NH3挥发排放累积量,kg/hm2;Ti为第i次测定的施肥后的天数,d;n为施肥后测定总次数.

  • 每次采集气体样品的同时测定土壤温度和土壤水分(图1).整个观测期间的土壤温度、土壤采样频率同采气频率,即每次采集气体样品的同时采集耕层土壤.采样后立即测定土壤水分,剩余样品储存于-4℃冰箱,用于测定土壤中NO-3-N、NH+4-N质量分数.土壤中NO-3-N、NH+4-N质量分数用2mol/L KCl溶液浸提-紫外分光光度计法测定.土壤充水孔隙度(Water Filled Pore Space,WFPS,量值记为ηWFPS)根据每次测定的土壤含水量与试验地的土壤容重(质量)计算得到,计算公式为

  • ηWFPS=φWCηSP
    (4)
  • ηSP=1-wSBD2.65
    (5)
  • 其中:φWC表示体积含水量,cm3/cm3;ηSP表示土壤总孔隙度,cm3/cm3;w SBD表示土壤容重,g/cm3;2.65为假定的土壤密度,g/cm3.

  • 整个采样期间,大棚内的土壤温度变化范围为20~28℃,WFPS值的变化范围为32.23%~56.41%,通过线性相关分析发现,N2O的排放量与WFPS呈显著正相关关系(P <0.05,n=27).

  • 图1 整个蔬菜生长期间土壤温度和土壤充水孔隙度(WFPS)动态变化

  • Fig.1 Dynamics of soil temperature (T) and Water Filled Pore Space (WFPS) during vegetable growing period

  • 1.4 蔬菜产量、活性气态氮累积排放量及其排放强度

  • 小白菜收获时,收取小区内所有植株,称量其鲜质量.

  • 将整个蔬菜生长季N2O和NH3的累积排放量加和,得活性气态氮的累积排放量.同时,运用活性气态氮排放强度来表征菜地土壤活性气态氮的排放量以及蔬菜产量的关系[25],计算公式如下:

  • IGNr=sGNrEyv
    (6)
  • 其中:I GNr为活性气态氮排放强度,kg/t(以N计);s GNrE为活性气态氮累积排放量,kg/hm2(以N计);y v为蔬菜产量,t/hm2.

  • 采用Microsoft excel2019和SPSS 22.0对数据进行统计分析.采用Student's t法对不同处理间的N2O和NH3排放通量、活性气态氮累积排放量、活性气态氮排放强度和蔬菜产量进行比较分析.

  • 2 结果分析

  • 2.1 蔬菜产量与辅助指标的分析

  • 不同处理间小白菜产量有显著差异(图2,图中不同大写字母表示处理间差异显著(P <0.05)),EM处理的小白菜产量最高,为34.14t/hm2,CK处理的小白菜产量最低,为27.92t/hm2.与CK和U处理相比,EM处理小白菜产量分别提高了22.28%(P <0.05)和17.94%(P <0.05),而CK与U处理间小白菜产量差异不显著,尿素配施EM菌剂增产效果较明显.

  • 图2 各处理小白菜产量

  • Fig.2 Yields of baby bok choy influenced by different N treatments

  • 不同处理间土壤NO-3-N的质量分数变化规律基本保持一致(图3a),总体上为小幅波动后上升,然后下降.3个处理的平均值由小到大依次为CK、U、EM,其中U处理和EM处理土样的NO-3-N平均质量分数相差较小,两者与CK处理的土样中NO-3-N平均质量分数相差均很大.3个处理土样中NH+4-N的质量分数变化情况有所区别(图3b),其中CK处理总体先增加后降低,6月22日小幅上升后,转为持续的平缓降低;U处理中土壤NH+4-N质量分数变化趋势为6月13日前小幅降低,此后至6月17日明显增加,自6月19日至7月2日明显下降;EM处理的NO+4-N的质量分数在短期内小幅增长,到6月22日后开始波动下降,此后无明显变化.

  • 图3 不同处理间硝态氮(a)、铵态氮(b)质量分数动态变化

  • Fig.3 Dynamics of soil NO-3-N (a) and NH+4-N (b) influenced by different N treatments

  • 2.2 尿素与EM菌剂对N2O排放的影响

  • 所有处理的N2O排放通量的变化趋势基本一致(图4),均为先快速增加,随后快速下降的趋势,其中EM处理N2O排放通量增加最明显.在整个小白菜生长期间,3个处理均在6月15日达到其N2O排放通量最大值,而其中EM处理值最大,为3 094.34 μg/(m2·h).

  • 图4 尿素与EM菌剂配施对小白菜N2O排放通量的影响

  • Fig.4 N2O emission flux from baby bok choy fields under different N treatments

  • 3个处理中N2O累积排放量如表1所示:最高的是EM处理,为6.47kg/hm2;最低的是CK处理,为3.18kg/hm2.与CK处理相比,EM处理和U处理N2O累积排放量分别提高了103.46%(P <0.05)和43.40%.与U处理相比,EM处理的N2O累积排放量增加了41.88%,差异显著(P <0.05).

  • 2.3 尿素与EM菌剂对NH3排放的影响

  • 各处理的NH3累积排放量如表1所示:最高的是EM处理,为1.03kg/hm2;最低的是CK处理,为0.71kg/hm2.与CK处理相比,EM处理和U处理NH3累积排放量分别提高了45.07%(P <0.05)和16.90%.与U处理相比,EM处理增加了NH3累积排放量的24.10%(P <0.05).

  • 2.4 各处理活性气态氮累积排放量及排放强度

  • 3个处理活性气态氮累积排放量如表1所示:最高的是EM处理,为7.50kg/hm2;最低的是CK处理,为3.89kg/hm2.与CK处理相比,EM处理和U处理的活性气态氮累积排放量分别提高了92.80%(P <0.05)和38.56%.与U处理相比,EM处理增加了活性气态氮累积排放量的39.15%.各处理中活性气态氮排放强度最高的是EM处理(表1),为0.22kg/t;最低的是CK处理,为0.14kg/t.与CK处理相比,EM处理和U处理的活性气态氮排放强度分别提高了57.14%(P <0.05)和35.71%.与U处理相比,EM处理增加了活性气态氮排放强度的15.79%(P <0.05).

  • 3 讨论

  • 3.1 尿素配施EM菌剂对蔬菜产量的影响

  • 微生物菌剂被大量研究证明具有明显提高作物产量的作用[26-27],这与本研究得到的结果一致.尿素配施EM菌剂处理的小白菜产量显著高于其他两个处理.施用EM菌剂增加蔬菜产量的原因可能是:施用生物菌剂后,土壤生物活性显著增加,土壤速效养分明显增加[17];作物根系结构改善[28],光合作用增强[11],进而增加了蔬菜产量.而在本研究中,与CK处理相比,U处理并没有显著增加小白菜产量,主要原因可能是设施菜地施入的氮肥量过大,而且土壤背景的无机氮含量较高[29].

  • 3.2 尿素配施EM菌剂对设施菜地活性气态氮累积排放量及其排放强度的影响

  • 土壤中N2O的产生主要由微生物的硝化和反硝化作用控制[30-31].目前大多数的研究认为微生物菌剂的施用能减缓农田N2O的排放[14,32].然而本研究结果却发现EM菌剂配施尿素并不能减少设施菜地N2O的排放,相反,显著增加了N2O的排放.前人认为生物菌剂的生长需要消耗一部分的氮源,同时可能会释放出酚类物质影响土壤中硝化细菌活动,因此减少了N2O的排放[13].也有研究认为EM菌剂中有成分能够与反硝化细菌争夺NO-3-N从而控制N2O排放.本研究中,EM菌剂的施用,虽然降低了菜地土壤NH+4-N的含量,但却明显提高了NO-3-N含量.EM菌剂与尿素配施增排N2O的原因可能有:EM菌剂中的微生物会导致土壤含氧量增高,影响了N2O还原成N2的过程,从而增加了N2O的产生量[33-34].但具体的机理还需要进一步的研究.

  • 表1 活性气态氮累积排放量及排放强度

  • Table1 Cumulative emissions and emission intensity of reactive gaseous N from baby bok choy fields under different N treatments

  • 注:同一列中平均值±标准差后不同大写字母代表差异显著(P <0.05).

  • 目前关于施用生物菌剂对农田土壤NH3排放影响的研究还比较少.本试验结果显示:与单施尿素处理相比,尿素配施生物菌剂会促进土壤NH3的排放.王振[15]和苑志强[17]曾对多种生物菌剂进行试验,发现施入菌剂后,土壤脲酶的活性均会显著提升.而脲酶活性提高会加速尿素分解成NH+4-N,从而促进了NH3挥发[35].同时生物菌剂施入土壤后,会在一定程度上影响土壤理化性质,如会导致土壤pH值升高[27].土壤pH值对NH3挥发起着重要作用,随着土壤pH值的升高,NH3排放量也会增大[36].同时,作为一种活菌制剂,EM菌剂施入土壤后会对土壤微生物分布、丰度等产生很大影响,因此推测施入EM菌剂后,土壤中分泌脲酶的微生物的活性和数量得到提升,从而促进NH3的排放.

  • 4 结论

  • 本研究发现,与单施尿素相比,尿素配施EM菌剂处理有显著的增产效应,但同时增加了设施菜地N2O和NH3的排放,造成尿素配施EM菌剂处理的活性气态氮排放强度高于其他两个处理.因此从对环境的损益角度上来看,尿素配施EM菌剂对于设施小白菜种植的适用性需要有更多的田间试验数据进一步评估.

  • 参考文献

    • [1] OCDE,FAO.OECD-FAO agricultural outlook 2015 [M].Paris:OECD,2015:18-32

    • [2] Bouwman A F.Exchange of greenhouse gases between terrestrial ecosystem and the atmosphere [J].Soils and Greenhouse Effect,1990:61-127

    • [3] 巨晓棠,谷保静.我国农田氮肥施用现状、问题及趋势[J].植物营养与肥料学报,2014,20(4):783-795;JU Xiaotang,GU Baojing.Status-quo,problem and trend of nitrogen fertilization in China [J].Journal of Plant Nutrition and Fertilizer,2014,20(4):783-795

    • [4] Sun H J,Zhang H L,Powlson D,et al.Rice production,nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine [J].Field Crops Research,2015,173:1-7

    • [5] Pan B B,Lam S K,Mosier A,et al.Ammonia volatilization from synthetic fertilizers and its mitigation strategies:a global synthesis [J].Agriculture,Ecosystems & Environment,2016,232:283-289

    • [6] Xu S J,Zhou S N,Ma S L,et al.Manipulation of nitrogen leaching from tea field soil using a Trichoderma viride biofertilizer [J].Environmental Science and Pollution Research,2017,24(36):27833-27842

    • [7] Wang J Y,Xiong Z Q,Yan X Y.Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China [J].Atmospheric Environment,2011,45(38):6923-6929

    • [8] Stocker T F.Climate change 2013:the physical science basis:Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change [M].Cambridge,UK:Cambridge University Press,2014

    • [9] Ravishankara A R,Daniel J S,Portmann R W.Nitrous oxide(N2O):the dominant ozone-depleting substance emitted in the 21st century [J].Science,2009,326(5949):123-125

    • [10] Behera S N,Sharma M,Aneja V P,et al.Ammonia in the atmosphere:a review on emission sources,atmospheric chemistry and deposition on terrestrial bodies [J].Environmental Science and Pollution Research,2013,20(11):8092-8131

    • [11] Zhou C,Ma Z Y,Zhu L,et al.Rhizobacterial strain bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance [J].International Journal of Molecular Sciences,2016,17(6):976

    • [12] Galloway J N,Aber J D,Erisman J W,et al.The nitrogen cascade [J].BioScience,2003,53(4):341-356

    • [13] 王璠,徐圣君,马双龙,等.解淀粉芽孢杆菌菌剂对雪菜生长和土壤氧化亚氮排放的影响[J].中国农学通报,2015,31(13):229-235;WANG Fan,XU Shengjun,MA Shuanglong,et al.Effect of Bacillus amyloliquefaciens biofertilizer on Brassica juncea var.multiceps growth and N2O emission from soil [J].Chinese Agricultural Science Bulletin,2015,31(13):229-235

    • [14] Wu S H,Zhuang G Q,Bai Z H,et al.Mitigation of nitrous oxide emissions from acidic soils by Bacillus amyloliquefaciens,a plant growth-promoting bacterium[J].Global Change Biology,2018,24(6):2352-2365

    • [15] 王振.复合微生物菌剂对水稻生长发育影响研究[D].沈阳:沈阳农业大学,2017:28-29;WANG Zhen.Effects of compound microbial agents on the growth and development of rice [D].Shenyang:Shenyang Agricultural University,2017:28-29

    • [16] 庞强强,蔡兴来,周曼,等.微生物菌肥对设施白菜生长、品质和土壤酶活性的影响[J].热带农业科学,2018,38(4):20-23;PANG Qiangqiang,CAI Xinglai,ZHOU Man,et al.Effects of microbial fertilizer on the growth,quality and soil enzyme activities of pakchoi in the solar greenhouse[J].Chinese Journal of Tropical Agriculture,2018,38(4):20-23

    • [17] 苑志强.生物菌肥对膜下滴灌马铃薯及土壤特性的影响[D].呼和浩特:内蒙古农业大学,2019:39-41;YUAN Zhiqiang.Effects of biological fertilizer on potato underwater and characteristics of soil under drip irrigation[D].Hohhot:Inner Mongolia Agricultural University,2019:39-41

    • [18] Giri B,Prasad R,Wu Q S,et al.Biofertilizers for sustainable agriculture and environment[M].Cham:Springer International Publishing,2019

    • [19] 汪霞.微生物菌剂对碱性土壤氨挥发的控制及其机理研究[D].合肥:中国科学技术大学,2017:19-20;WANG Xia.The effects and mechanism of biofertilizer on mitigation the ammonia volatilization from the alkaline soil [D].Hefei:University of Science and Technology of China,2017:19-20

    • [20] Xu S J,Feng S G,Sun H S,et al.Linking N2O emissions from biofertilizer-amended soil of tea plantations to the abundance and structure of N2O-reducing microbial communities[J].Environmental Science & Technology,2018,52(19):11338-11345

    • [21] Higa T,Wididana G N.The concept and theories of effective microorganisms[C]//Proceedings of the First International Conference on Kyusei Nature Farming,1991:118-124

    • [22] 葛诚.微生物肥料生产及其产业化[M].北京:化学工业出版社,2007:143-150;GE Cheng.Production and industrialization of microbial fertilizer[M].Beijing:Chemical Industry Press,2007,143-150

    • [23] 李照全,阎世江.生物菌肥加微量元素防治番茄病害试验研究初报[J].天津农林科技,2019(4):14-15,21;LI Zhaoquan,YAN Shijiang.Preliminary study on control of tomato diseases by biological bacterial fertilizer and trace elements [J].Science and Technology of Tianjin Agriculture and Forestry,2019(4):14-15,21

    • [24] 颜晓元.土壤氮循环实验研究方法[M].北京:科学出版社,2020;YAN Xiaoyuan.Experimental methods for nitrogen cycling in soils [M].Beijing:Science Press,2020

    • [25] Zhao M,Tian Y H,Ma Y C,et al.Mitigating gaseous nitrogen emissions intensity from a Chinese rice cropping system through an improved management practice aimed to close the yield gap[J].Agriculture,Ecosystems & Environment,2015,203:36-45

    • [26] Khan M Y,Haque M M,Molla A H,et al.Antioxidant compounds and minerals in tomatoes by Trichoderma-enriched biofertilizer and their relationship with the soil environments[J].Journal of Integrative Agriculture,2017,16(3):691-703

    • [27] 李青梅,陆秀君,张敏硕,等.微生物菌剂和生根粉对甜瓜产量和土壤生态效应的影响[J].北方园艺,2020(7):100-105;LI Qingmei,LU Xiujun,ZHANG Minshuo,et al.Effects of microbial inoculants and rooting powder on muskmelon yield and soil ecological effect [J].Northern Horticulture,2020(7):100-105

    • [28] 宋以玲,于建,陈士更,等.化肥减量配施生物有机肥对油菜生长及土壤微生物和酶活性影响[J].水土保持学报,2018,32(1):352-360;SONG Yiling,YU Jian,CHEN Shigeng,et al.Effects of reduced chemical fertilizer with application of bio-organic fertilizer on rape growth,microorganism and enzymes activities in soil[J].Journal of Soil and Water Conservation,2018,32(1):352-360

    • [29] 李博,张曼,熊正琴.施用氮肥与生物炭对菜地净综合温室效应的影响[J].中国科技论文,2014,9(9):1057-1062;LI Bo,ZHANG Man,XIONG Zhengqin.Effects of nitrogen fertilizer and biochar on net global warming potential of intensively managed vegetable fields[J].China Sciencepaper,2014,9(9):1057-1062

    • [30] Firestone M K,Davidson E A.Microbiological basis of NO and N2O production and consumption in soil[C]//Andreae M O,Schimel D S.Exchange of trace gases between terrestrial ecosystem and the atmosphere.Chichester,UK:John Wiley & Sons Ltd.,1989:7-21

    • [31] Zhang W F,Dou Z X,He P,et al.New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(21):8375-8380

    • [32] 王晓朋,胡坤,童晨晓,等.猪粪与菌剂配施对山地红壤温室气体排放的影响[J].福建农业学报,2019,34(11):1323-1331;WANG Xiaopeng,HU Kun,TONG Chenxiao,et al.Effect of bacterial agent added to fertilizer on greenhouse gas emissions of mountain red soil[J].Fujian Journal of Agricultural Sciences,2019,34(11):1323-1331

    • [33] Šimek M,Jíšová L,Hopkins D W.What is the so-called optimum pH for denitrification in soil?[J].Soil Biology and Biochemistry,2002,34(9):1227-1234

    • [34] Zhou S,Zeng X,Xu Z,et al.Paenibacillus polymyxa biofertilizer application in a tea plantation reduces soil N2O by changing denitrifier communities[J].Canadian Journal of Microbiology,2020,66(3):214-227

    • [35] Shan L N,He Y F,Chen J,et al.Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin,China[J].Journal of Environmental Sciences,2015,38:14-23

    • [36] 许云翔,何莉莉,陈金媛,等.生物炭对农田土壤氨挥发的影响机制研究进展[J].应用生态学报,2020,31(12):4312-4320;XU Yunxiang,HE Lili,CHEN Jinyuan,et al.Effects of biochar on ammonia volatilization from farmland soil:a review[J].Chinese Journal of Applied Ecology,2020,31(12):4312-4320

  • 参考文献

    • [1] OCDE,FAO.OECD-FAO agricultural outlook 2015 [M].Paris:OECD,2015:18-32

    • [2] Bouwman A F.Exchange of greenhouse gases between terrestrial ecosystem and the atmosphere [J].Soils and Greenhouse Effect,1990:61-127

    • [3] 巨晓棠,谷保静.我国农田氮肥施用现状、问题及趋势[J].植物营养与肥料学报,2014,20(4):783-795;JU Xiaotang,GU Baojing.Status-quo,problem and trend of nitrogen fertilization in China [J].Journal of Plant Nutrition and Fertilizer,2014,20(4):783-795

    • [4] Sun H J,Zhang H L,Powlson D,et al.Rice production,nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine [J].Field Crops Research,2015,173:1-7

    • [5] Pan B B,Lam S K,Mosier A,et al.Ammonia volatilization from synthetic fertilizers and its mitigation strategies:a global synthesis [J].Agriculture,Ecosystems & Environment,2016,232:283-289

    • [6] Xu S J,Zhou S N,Ma S L,et al.Manipulation of nitrogen leaching from tea field soil using a Trichoderma viride biofertilizer [J].Environmental Science and Pollution Research,2017,24(36):27833-27842

    • [7] Wang J Y,Xiong Z Q,Yan X Y.Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China [J].Atmospheric Environment,2011,45(38):6923-6929

    • [8] Stocker T F.Climate change 2013:the physical science basis:Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change [M].Cambridge,UK:Cambridge University Press,2014

    • [9] Ravishankara A R,Daniel J S,Portmann R W.Nitrous oxide(N2O):the dominant ozone-depleting substance emitted in the 21st century [J].Science,2009,326(5949):123-125

    • [10] Behera S N,Sharma M,Aneja V P,et al.Ammonia in the atmosphere:a review on emission sources,atmospheric chemistry and deposition on terrestrial bodies [J].Environmental Science and Pollution Research,2013,20(11):8092-8131

    • [11] Zhou C,Ma Z Y,Zhu L,et al.Rhizobacterial strain bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance [J].International Journal of Molecular Sciences,2016,17(6):976

    • [12] Galloway J N,Aber J D,Erisman J W,et al.The nitrogen cascade [J].BioScience,2003,53(4):341-356

    • [13] 王璠,徐圣君,马双龙,等.解淀粉芽孢杆菌菌剂对雪菜生长和土壤氧化亚氮排放的影响[J].中国农学通报,2015,31(13):229-235;WANG Fan,XU Shengjun,MA Shuanglong,et al.Effect of Bacillus amyloliquefaciens biofertilizer on Brassica juncea var.multiceps growth and N2O emission from soil [J].Chinese Agricultural Science Bulletin,2015,31(13):229-235

    • [14] Wu S H,Zhuang G Q,Bai Z H,et al.Mitigation of nitrous oxide emissions from acidic soils by Bacillus amyloliquefaciens,a plant growth-promoting bacterium[J].Global Change Biology,2018,24(6):2352-2365

    • [15] 王振.复合微生物菌剂对水稻生长发育影响研究[D].沈阳:沈阳农业大学,2017:28-29;WANG Zhen.Effects of compound microbial agents on the growth and development of rice [D].Shenyang:Shenyang Agricultural University,2017:28-29

    • [16] 庞强强,蔡兴来,周曼,等.微生物菌肥对设施白菜生长、品质和土壤酶活性的影响[J].热带农业科学,2018,38(4):20-23;PANG Qiangqiang,CAI Xinglai,ZHOU Man,et al.Effects of microbial fertilizer on the growth,quality and soil enzyme activities of pakchoi in the solar greenhouse[J].Chinese Journal of Tropical Agriculture,2018,38(4):20-23

    • [17] 苑志强.生物菌肥对膜下滴灌马铃薯及土壤特性的影响[D].呼和浩特:内蒙古农业大学,2019:39-41;YUAN Zhiqiang.Effects of biological fertilizer on potato underwater and characteristics of soil under drip irrigation[D].Hohhot:Inner Mongolia Agricultural University,2019:39-41

    • [18] Giri B,Prasad R,Wu Q S,et al.Biofertilizers for sustainable agriculture and environment[M].Cham:Springer International Publishing,2019

    • [19] 汪霞.微生物菌剂对碱性土壤氨挥发的控制及其机理研究[D].合肥:中国科学技术大学,2017:19-20;WANG Xia.The effects and mechanism of biofertilizer on mitigation the ammonia volatilization from the alkaline soil [D].Hefei:University of Science and Technology of China,2017:19-20

    • [20] Xu S J,Feng S G,Sun H S,et al.Linking N2O emissions from biofertilizer-amended soil of tea plantations to the abundance and structure of N2O-reducing microbial communities[J].Environmental Science & Technology,2018,52(19):11338-11345

    • [21] Higa T,Wididana G N.The concept and theories of effective microorganisms[C]//Proceedings of the First International Conference on Kyusei Nature Farming,1991:118-124

    • [22] 葛诚.微生物肥料生产及其产业化[M].北京:化学工业出版社,2007:143-150;GE Cheng.Production and industrialization of microbial fertilizer[M].Beijing:Chemical Industry Press,2007,143-150

    • [23] 李照全,阎世江.生物菌肥加微量元素防治番茄病害试验研究初报[J].天津农林科技,2019(4):14-15,21;LI Zhaoquan,YAN Shijiang.Preliminary study on control of tomato diseases by biological bacterial fertilizer and trace elements [J].Science and Technology of Tianjin Agriculture and Forestry,2019(4):14-15,21

    • [24] 颜晓元.土壤氮循环实验研究方法[M].北京:科学出版社,2020;YAN Xiaoyuan.Experimental methods for nitrogen cycling in soils [M].Beijing:Science Press,2020

    • [25] Zhao M,Tian Y H,Ma Y C,et al.Mitigating gaseous nitrogen emissions intensity from a Chinese rice cropping system through an improved management practice aimed to close the yield gap[J].Agriculture,Ecosystems & Environment,2015,203:36-45

    • [26] Khan M Y,Haque M M,Molla A H,et al.Antioxidant compounds and minerals in tomatoes by Trichoderma-enriched biofertilizer and their relationship with the soil environments[J].Journal of Integrative Agriculture,2017,16(3):691-703

    • [27] 李青梅,陆秀君,张敏硕,等.微生物菌剂和生根粉对甜瓜产量和土壤生态效应的影响[J].北方园艺,2020(7):100-105;LI Qingmei,LU Xiujun,ZHANG Minshuo,et al.Effects of microbial inoculants and rooting powder on muskmelon yield and soil ecological effect [J].Northern Horticulture,2020(7):100-105

    • [28] 宋以玲,于建,陈士更,等.化肥减量配施生物有机肥对油菜生长及土壤微生物和酶活性影响[J].水土保持学报,2018,32(1):352-360;SONG Yiling,YU Jian,CHEN Shigeng,et al.Effects of reduced chemical fertilizer with application of bio-organic fertilizer on rape growth,microorganism and enzymes activities in soil[J].Journal of Soil and Water Conservation,2018,32(1):352-360

    • [29] 李博,张曼,熊正琴.施用氮肥与生物炭对菜地净综合温室效应的影响[J].中国科技论文,2014,9(9):1057-1062;LI Bo,ZHANG Man,XIONG Zhengqin.Effects of nitrogen fertilizer and biochar on net global warming potential of intensively managed vegetable fields[J].China Sciencepaper,2014,9(9):1057-1062

    • [30] Firestone M K,Davidson E A.Microbiological basis of NO and N2O production and consumption in soil[C]//Andreae M O,Schimel D S.Exchange of trace gases between terrestrial ecosystem and the atmosphere.Chichester,UK:John Wiley & Sons Ltd.,1989:7-21

    • [31] Zhang W F,Dou Z X,He P,et al.New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(21):8375-8380

    • [32] 王晓朋,胡坤,童晨晓,等.猪粪与菌剂配施对山地红壤温室气体排放的影响[J].福建农业学报,2019,34(11):1323-1331;WANG Xiaopeng,HU Kun,TONG Chenxiao,et al.Effect of bacterial agent added to fertilizer on greenhouse gas emissions of mountain red soil[J].Fujian Journal of Agricultural Sciences,2019,34(11):1323-1331

    • [33] Šimek M,Jíšová L,Hopkins D W.What is the so-called optimum pH for denitrification in soil?[J].Soil Biology and Biochemistry,2002,34(9):1227-1234

    • [34] Zhou S,Zeng X,Xu Z,et al.Paenibacillus polymyxa biofertilizer application in a tea plantation reduces soil N2O by changing denitrifier communities[J].Canadian Journal of Microbiology,2020,66(3):214-227

    • [35] Shan L N,He Y F,Chen J,et al.Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin,China[J].Journal of Environmental Sciences,2015,38:14-23

    • [36] 许云翔,何莉莉,陈金媛,等.生物炭对农田土壤氨挥发的影响机制研究进展[J].应用生态学报,2020,31(12):4312-4320;XU Yunxiang,HE Lili,CHEN Jinyuan,et al.Effects of biochar on ammonia volatilization from farmland soil:a review[J].Chinese Journal of Applied Ecology,2020,31(12):4312-4320

  • 地址:江苏省南京市宁六路219号    邮编:210044

    联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

    南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司