-
0 引言
-
近些年来,中国机动车的数量呈现持续增长的趋势.2019年全国机动车的保有量达到3.48亿辆,比2018年增长6.4%[1].特别是在城市地区,道路和车辆密度极高,使得机动车尾气排放成为大气污染物重要的污染源[2-3].机动车数量的快速增长也使得机动车排放的温室气体在整体人为温室气体排放中占据越来越重要的地位[4-5].我国二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和[6],这对温室气体的减排提出了严格要求.在此背景下,机动车的温室气体排放受到了越来越多的关注.
-
机动车排放的温室气体主要是CO2,根据国际能源署(2015年)的统计结果显示,全球交通运输行业的CO2排放量占到全球CO2总排放量的1/4[7].国内对于机动车CO2排放的研究主要使用道路监测[8-9]和模型模拟[10-12]的方法进行,且是针对整体车流的研究.对单一车辆CO2排放因子(Emission Factors,EFs)的研究大多是通过台架试验的方法进行,但是由于研究较早,多数使用NEDC(New European Driving Cycle,新欧洲驾驶循环)工况进行测试[13-14].近些年的研究表明使用NEDC工况会低估实际的机动车尾气污染物排放水平[15-16],而CO2作为机动车尾气中的重要组成部分,可能也受到工况的影响使得其排放因子严重低估.同时,随着机动车排放标准和燃油标准的不断提高,当前运行的机动车与过去存在着明显的区别,这可能对尾气CO2的排放产生很大的影响.中国政府在大力推广国六标准液化石油气公交车的使用[17],以此控制尾气污染物的排放.而国内缺少对国六标准液化石油气公交车CO2排放因子的相关研究,因此,需要对当前在用车辆进行重新测量,以获得符合当前道路机动车真实情况的CO2排放因子数据.
-
以往研究表明,机动车的冷热启动程序对污染物排放的浓度有重要的影响[18-19].冷启动指的是机动车长时间未启动,发动机和机油趋于环境温度,机油的黏度增加,零部件之间的摩擦变大;热启动指的是在充分预热之后,停车之后的立即启动.机动车尾气中部分污染物在冷启动阶段有大量的排放[20-21],因此,也需要考虑到冷热启动对尾气CO2排放的影响.
-
有鉴于此,本研究根据《中国移动源环境管理年报(2020)》[1]选取了14辆国内常用的在用车辆,包含中国绝大多数的车辆类型,利用台架试验拟构建本地化的CO2排放因子.试验车辆分为轻型车和重型车两类,分别使用WLTC (Worldwide harmonized Light-duty Test Cycle,世界轻型车测试程序)和C-WTVC(China-World Transient Vehicle Cycle,中国重型商用车辆瞬态循环)工况测试冷启动程序下的CO2排放因子,同时结合相应工况的热启动和NEDC热启动工况下的排放因子作为对比.通过对这14辆机动车CO2排放因子的测量,提供当前本土机动车CO2排放因子数值,以期未来能更准确地推估国内机动车道路CO2的排放量,供温室气体减排政策的制定作参考.
-
1 材料与方法
-
1.1 测试车辆的选取
-
本研究选取14辆国内常用的在用车辆,6辆轻型车分别是2辆国五轻型汽油车、2辆国四轻型柴油车、2辆国四液化石油气出租车;8辆重型车分别是2辆国四重型柴油货车、4辆国五重型柴油货车和2辆全新的国六液化石油气公交车.液化石油气出租车符合中国实际的条件,即较高的行驶里程和改装自燃油车[22].具体的车辆信息如表1所示.
-
1.2 测试分析
-
车辆排放因子建立的试验于厦门环境保护车辆排放控制技术中心(VETC)进行.试验期间,各机动车放置于底盘测功机上进行测试,车辆的测试流程符合GB 18352.5—2013[23]的规定.轻型车辆使用WLTC冷/热启动工况进行测试.WLTC工况是最新的国六标准要求的油耗工况,分为低速阶段、中速阶段、高速阶段和超高速阶段,相较于过往研究常用的NEDC工况速度范围波动更大,覆盖了更多的驾驶条件,结果更为符合实际的道路情况[24].同时作为对比,对轻型车使用NEDC热启动工况进行相同测试[15],NEDC工况由城区和市郊两个阶段组成,属于稳态工况.重型车使用C-WTVC冷/热启动工况,分为市区阶段、郊区阶段和高速阶段,C-WTVC工况是中国重型商用车油耗认证的标准工况,基于WTVC工况,更为符合中国的实际道路驾驶条件[25].3种工况的具体信息如图1所示.同时考虑到对比和实际的条件,WLTC工况的高速和超高速阶段在本研究中总和为高超速阶段.
-
机动车在底盘测功机上进行相应工况测试的同时,尾气被通入全流定容稀释系统(CVS)中进行稀释.使用不分光红外线吸收(NDIR)型CO2分析仪对CVS稀释管的气体进行在线测量,所有的仪器在测试前均经过标准气的标定.在每一个工况运行结束后对管路进行清洁.具体的测试流程如图2所示,测试车辆会在试验前一晚驶入恒温恒湿的环境仓(24℃,相对湿度66%,1 003.8mbar)停放12h,之后进行相应的测试,详细的试验步骤参考文献[26].本实验所有车辆均处于空载的情况下,车辆上只有一位驾驶员.
-
注:整备质量指车辆空载,满油满水的整车质量;排量指发动机内所有活塞运行的气缸容积之和.
-
图1 C-WTVC(a)、NEDC(b)和WLTC(c)工况的具体信息
-
Fig.1 Specific information of C-WTVC (a),NEDC (b) and WLTC (c) driving cycles
-
1.3 排放因子计算
-
根据试验得到的CO2在线浓度,利用式(1)进行换算,得到相应的排放因子(g/km):
-
式中,F E为排放因子(g/km),C s为样品气体体积分数(10-6),C 0为背景气体积分数(10-6),F D为稀释因子,D为行驶里程(km),M为摩尔质量(g·mol-1),P s和T s分别为环境仓的大气压力(kPa)和温度(K),P 0和T 0分别为标准条件的大气压力(101.325kPa)和温度(273.15K),V mix为CVS的体积(m3).
-
式中, 是全工况的排放因子(g/km),D 1,D 2和D 3分别是3个不同阶段行驶的里程(km),F E,1,F E,2和F E,3分别是3个阶段各自的排放因子(g/km).
-
1.4 油耗计算
-
机动车的CO2排放是由燃油燃烧产生的,与油耗紧密相关,因此研究机动车的CO2排放特征需要考虑到机动车的油耗.这项研究中,使用碳平衡法计算油耗[27],如式(3)所示:
-
图2 轻型车和重型车辆的测试流程
-
Fig.2 Test processes for light-duty and heavy-duty vehicles
-
其中:C F表示的是油耗(L/(100km));W C是碳质量分数,汽油和柴油为0.866,液化石油气是0.82;d是燃油的密度(g/L),汽油为730g/L,柴油为850g/L,液化石油气为510g/L[8];F E,THC,F E,CO和分别为THC、CO和CO2的排放因子(g/km),由于THC和CO并不是本研究的重点,因此并未对其进行研究分析.
-
2 结果与讨论
-
2.1 不同驾驶阶段机动车油耗和CO2排放因子
-
本试验中14辆机动车不同阶段的CO2排放因子和燃油消耗如图3所示.其中图3a与图3b分别是轻型车在WLTC工况下及重型车在C-WTVC工况下冷启动不同阶段的CO2排放因子和油耗,油耗和加权平均分别由式(3)和式(2)计算得出,具体的车辆信息参考表1.结果表明,对于轻型车而言,轻型汽油车、液化石油气出租车和轻型柴油车在WLTC冷启动工况下的加权平均CO2排放因子分别为180.7、150.0和226.9g·km-1,其油耗分别为7.9、11.1和7.9L·(100km)-1.对于重型车而言,重型柴油车和液化石油气公交车在C-WTVC冷启动工况下的加权平均CO2排放因子分别为546.4和498.2g·km-1,油耗分别为20.4和32.9L·(100km)-1.由于更高的排量和整备质量[28],重型车的油耗和CO2排放因子明显要高于轻型车,重型柴油货车相较于轻型柴油车油耗和CO2排放因子分别高出160%和140%,液化石油气公交车相较于液化石油气出租车则分别高出39.6%和232%.
-
车辆在不同路段的驾驶条件差异很大,对尾气污染物排放也存在很大的影响[29],因此不同的工况都会划分不同的阶段以代表不同的驾驶路段.本研究的结果显示,在WLTC工况低速阶段和C-WTVC工况市区阶段机动车的油耗最高,轻型汽油车、液化石油气出租车、轻型柴油车、重型柴油货车和液化石油气公交车在此阶段的油耗比相应的全工况要分别高出20.7%、25.8%、1.8%、131.4%和169.2%,这是频繁的加速和总体偏低的平均速度导致的[30-31].因此机动车在WLTC工况低速阶段和C-WTVC工况市区阶段的尾气CO2排放因子最高.特别是重型车,在C-WTVC市区阶段的CO2排放因子显著高于其他阶段,重型柴油货车和液化石油气公交车在C-WTVC市区阶段的CO2排放因子比全工况分别高出140.1%和199.7%.这表明,机动车,特别是重型车,在城市路段会大幅增加燃油的消耗,导致更多的CO2排放.
-
图3 轻型车(a)和重型车(b)分阶段的CO2排放因子和油耗
-
Fig.3 Phased CO2 EFs and fuel consumption of light-duty (a) and heavy-duty (b) vehicles
-
2.2 车辆条件的影响
-
车重(质量)和排量是影响油耗和CO2排放的重要因素[32].由于本研究车辆选取的限制,仅对6辆重型柴油货车分析车重和排量的影响,如图4所示.不同阶段下重型柴油货车的油耗和CO2排放与车重和排量均有很好的相关性,但与排量的线性相关更为明显.研究结果表明,重型柴油货车的油耗和CO2排放因子受到车重和排量的强烈影响,越重的车重和越高的排量会导致更高的燃油消耗和CO2排放.同时,研究发现,相较于郊区和高速阶段的趋势线,市区阶段的趋势线斜率明显偏小,这导致随着排量和车重的上升,市区阶段重型柴油车的油耗和CO2排放因子会更大幅度地上升,因此,控制大排量大重量的重型柴油货车进入市区能有效控制CO2排放.
-
6辆受测重型柴油货车中包含2辆国四重型柴油货车(HT1、HT2)和4辆国五重型柴油货车(HT3、HT4、HT5、HT6),2辆国四重型柴油货车(排量6.494L)的油耗(22.0L·(100km)-1)和CO2加权平均排放因子(559.6g·km-1)与2辆排量相近(6.87L)的国五重型柴油车(HT4和HT5,22.8L·(100km)-1和590.6g·km-1)相当,而高于较低排量(3.77L)的国五重型柴油货车HT3(15.2L·(100km)-1,392.4g·km-1),这说明重型柴油货车的CO2排放和油耗受到国四到国五排放标准改变的影响不大,而排量的影响更为重要.
-
2.3 燃油差异的影响
-
液化石油气由于其清洁性和经济性,在公共交通中受到大力推广[33-34].本研究中,尽管液化石油气车辆拥有最高的油耗,但是其CO2排放因子却偏低.液化石油气出租车在WLTC冷启动工况的低速阶段CO2排放因子(228.6g·km-1)仅比轻型汽油车(229.1g·km-1) 低了0.2%,而在WLTC冷启动工况的高超速阶段液化石油气出租车的CO2排放因子(138.9g·km-1)比轻型汽油车(174.6g·km-1)低了20.4%.对于液化石油气公交车而言,本研究并无针对相近排量(9.5L)燃油重型车做相关研究,但上文的结果表明重型柴油货车不同阶段冷启动程序下CO2排放因子和排量有极好的线性相关(图4).因此可以利用线性回归方程推算9.5L排量重型柴油货车不同阶段CO2排放因子,其在C-WTVC冷启动工况下市区、郊区和高速3个阶段估算的CO2排放因子分别为1 913.5、697.6和537.7g·km-1.而9.5L排量的液化石油气公交车在C-WTVC冷启动工况下市区、郊区和高速阶段的CO2排放因子分别为1 497.3、433.1和259.2g·km-1,相应分别减少了21.8%、37.9%和51.8%.因此,使用液化石油气作为燃料会有效地减少CO2的排放,同时在高速路段(WLTC工况的高超速阶段和C-WTVC工况的高速阶段),这种减排会更加明显.
-
图4 油耗与排量(a)、油耗与车质量(b)、CO2排放因子与排量(c)和CO2排放因子与车质量(d)分阶段的相关性
-
Fig.4 Correlation between fuel consumption and displacement (a),fuel consumption and weight (b), CO2 EFs and displacement (c),and CO2 EFs and weight (d) by phases
-
2.4 冷热启动的影响
-
冷热启动对机动车CO2排放和油耗有重要的影响[18-19],在冷启动时期,较低的润滑油温度会导致较高的机械摩擦,进而导致更高的燃油消耗,CO2的排放也会增加.图5显示了轻型车和重型车冷热启动的燃油差异,结果表明,轻型汽油车、液化石油气出租车、轻型柴油车和重型柴油车在WLTC/C-WTVC冷启动工况下低速/市区阶段的油耗比热启动分别高出17.7%、42.8%、22.8%和9.1%,而在其他阶段,差距仅在5%以内,这表明冷热启动主要影响城市路段.而对于液化石油气公交车,不同阶段冷热启动油耗差异在76%以上,最高到245.7%,这表明冷热启动会对液化石油气公交车产生强烈的影响.
-
冷热启动对油耗有影响,同时也影响机动车尾气CO2的排放(图6).与油耗一致,冷热启动对CO2排放的影响主要集中于起步的低速/市区阶段,轻型汽油车、液化石油气出租车、轻型柴油车、重型柴油货车和液化石油气公交车在WLTC/C-WTVC冷启动工况下低速/市区阶段的CO2排放因子比热启动分别高出11.4%、22.2%、18.5%、8.3%和35.5%.同时研究发现冷热启动对CO2排放影响的幅度均小于对油耗的影响,特别是对于液化石油气公交车,这是因为冷热启动也会对THC和CO的排放产生一定的影响.
-
2.5 与真实道路和不同工况的对比
-
在台架试验中,驾驶循环工况用于模拟机动车真实的道路驾驶,工况的不同会影响尾气污染物的排放[15-16].表2总结了本试验和国内其他研究的机动车CO2排放因子和油耗,作为补充,本研究额外对轻型车进行了NEDC热启动工况的测试作为对比,而对于重型车目前除了C-WTVC工况外并无专为中国道路实际改良的测试工况,因此主要与过往国内研究对比.结果显示:本研究中6辆轻型车在NEDC热启动工况下的油耗和CO2排放因子与WLTC热启动工况下的差异很小,并不明显,这与欧美国家过去的实测结果一致[35-37];对于液化石油气出租车和轻型柴油车而言,NEDC热启动工况下的油耗甚至分别高出4.9%和13.3%,2020年开始使用的CHTC-HT(中国重型商用车重型载货汽车试验循环)工况的重型柴油货车[38]与本研究中相近排量的重型柴油货车的油耗相近.这表明,工况的演进对机动车油耗和CO2排放因子的影响并不大.本研究中轻型汽油车的油耗要比道路测试低17.7%~26.8%[39],CO2排放因子要比道路[40]和模型模拟[41]的结果低31%~46%.而重型柴油车在C-WTVC工况下的油耗和CO2排放因子都与道路实测相近排量重型柴油车接近[42].C-WTVC工况改良自世界通用的WTVC工况,更符合中国道路实际,而WLTC和NEDC工况是世界轻型车辆通用标准工况,主要制定者是欧美国家,工况的演进更符合欧美国家目前的道路实际,与国内的现实情况依旧存在差异.因此,需要对世界通用工况进行本地化的改良,以期获得更为符合中国道路实际的油耗和CO2排放因子.目前国内已经开始了相关的研究[43-44],利用实际的道路车辆运行信息建立本地化的驾驶循环工况.
-
图5 轻型车(a)和重型车(b)分别在WLTC和C-WTVC工况的不同阶段下冷热启动的油耗差异
-
Fig.5 Differences in fuel consumption of light-duty vehicles (a) and heavy-duty vehicles (b) at different phases of WLTC and C-WTVC driving cycles in the cold/hot start procedures
-
图6 轻型车(a)和重型车(b)分别在WLTC和C-WTVC工况的不同阶段下冷热启动的CO2排放因子差异
-
Fig.6 Differences in CO2 EFs of light-duty vehicles (a) and heavy-duty vehicles (b) at different phases of WLTC and C-WTVC driving cycles in the cold/hot start procedure
-
3 结论
-
本试验测试了中国14辆目前常用车辆在不同工况和驾驶条件下的CO2排放因子和油耗,并进行了比较,结果表明:
-
1)轻型汽油车、液化石油气出租车、轻型柴油车、重型柴油车和液化石油气公交车在WLTC/C-WTVC工况下冷启动程序的全工况加权平均CO2排放因子分别为180.7±7、150±1.8、226.9±0.4、546.4±85.3和498.2±45.2g·km-1,油耗分别为7.9±0.6、11±1.2、7.9±0.4、20.4±3.2和32.9±4.2L·(100km)-1.
-
2)机动车的排量、车质量、冷热启动和驾驶路段通过影响油耗从而导致CO2排放因子的变化.机动车尾气CO2排放因子在城市路段的冷启动下最高,轻型汽油车、液化石油气出租车、轻型柴油车、重型柴油车和液化石油气公交车在城市路段冷启动下的CO2排放因子分别为229.1、228.6、263.8、1 311.7和1 497.3g·km-1,比相应的冷启动全工况排放因子分别高出26.6%、52.4%、16.3%、140.1%和199.7%,比相应的热启动城市路段的CO2排放因子分别高出11.4%、22.2%、18.5%、8.3%和35.5%.排量的增加会导致机动车CO2排放因子增加,特别是跟重型柴油车有极好的线性相关,同时在城市路段排量的增加会导致重型柴油车的CO2排放因子大幅增加,因此禁止大排量重型柴油车进入市区能有效控制CO2排放.
-
3)中国在大力推广使用液化石油气公共车辆,这会有效地控制尾气污染物的排放.使用液化石油气代替燃油也会降低CO2的排放,并且这种减排在高速路段比城市路段更为明显.在城市路段,相较于相近排量的轻型汽油车,液化石油气出租车CO2排放会降低12.1%,相较于排量相同的重型柴油车,液化石油气公交车的CO2排放会降低37.2%,而高速路段,则分别降低20.3%和51.8%.
-
4)台架试验中,驾驶循环工况用于模拟实际驾驶路段,是尾气污染物排放的重要影响因素.本研究的结果发现,国际标准驾驶工况的演进对机动车CO2排放和油耗的影响不大.与国内实际道路测试结果对比发现,使用本地化的C-WTVC工况的CO2排放因子和油耗与实际道路结果接近,而使用国际标准WLTC工况的CO2排放因子比实际结果要小31%~46%,油耗要小17.7%~26.8%.所以,应该加快国际标准工况的本土化改良,以获得更为符合本土实际道路的CO2排放因子和油耗.
-
参考文献
-
[1] 中国能源编辑部.《中国移动源环境管理年报(2020)》发布[J].中国能源,2020,42(8):1
-
[2] von Schneidemesser E,Steinmar K,Weatherhead E C,et al.Air pollution at human scales in an urban environment:impact of local environment and vehicles on particle number concentrations[J].Science of the Total Environment,2019,688:691-700
-
[3] Cannistraro G,Cannistraro M,Cannistraro A,et al.Analysis of air pollution in the urban center of four cities Sicilian[J].International Journal of Heat and Technology,2016,34(2):S219-S225
-
[4] Tong F,Jaramillo P,Azevedo I M L.Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles[J].Environmental Science & Technology,2015,49(12):7123-7133
-
[5] Popa M E,Vollmer M K,Jordan A,et al.Vehicle emissions of greenhouse gases and related tracers from a tunnel study:CO∶CO2,N2O∶CO2,CH4∶CO2,O2∶CO2 ratios,and the stable isotopes 13C and 18O in CO2 and CO[J].Atmospheric Chemistry and Physics,2014,14(4):2105-2123
-
[6] 习近平在第七十五届联合国大会一般性辩论上发表重要讲话[N].人民日报,2020-09-23(1)
-
[7] Rutovitz J,Dominish E,Downes J.Calculating global energy sector jobs:2015 methodology[R].University of Technology Sydney,2015
-
[8] Zhang S J,Wu Y,Liu H,et al.Real-world fuel consumption and CO2(carbon dioxide)emissions by driving conditions for light-duty passenger vehicles in China[J].Energy,2014,69:247-257
-
[9] Song T,Wang Y S.Carbon dioxide fluxes from an urban area in Beijing[J].Atmospheric Research,2012,106:139-149
-
[10] Xu B,Lin B Q.Factors affecting carbon dioxide(CO2)emissions in China's transport sector:a dynamic nonparametric additive regression model[J].Journal of Cleaner Production,2015,101:311-322
-
[11] Gambhir A,Schulz N,Napp T,et al.A hybrid modelling approach to develop scenarios for China's carbon dioxide emissions to 2050[J].Energy Policy,2013,59:614-632
-
[12] Chang X M,Chen B Y,Li Q Q,et al.Estimating real-time traffic carbon dioxide emissions based on intelligent transportation system technologies[J].IEEE Transactions on Intelligent Transportation Systems,2013,14(1):469-479
-
[13] 何立强,宋敬浩,胡京南,等.轻型汽油车CH4和N2O排放因子研究[J].环境科学,2014,35(12):4489-4494;HE Liqiang,SONG Jinghao,HU Jingnan,et al.An investigation of the CH4 and N2O emission factors of light-duty gasoline vehicles[J].Environmental Science,2014,35(12):4489-4494
-
[14] Shen K,Chang L,Chen H,et al.Experimental study on the effects of exhaust heat recovery system(EHRS)on vehicle fuel economy and emissions under cold start new European driving cycle(NEDC)[J].Energy Conversion and Management,2019,197:111893
-
[15] Marotta A,Pavlovic J,Ciuffo B,et al.Gaseous emissions from light-duty vehicles:moving from NEDC to the new WLTP test procedure[J].Environmental Science & Technology,2015,49(14):8315-8322
-
[16] Giakoumis E,Zachiotis A.Investigation of a diesel-engined vehicle's performance and emissions during the WLTC driving cycle:comparison with the NEDC[J].Energies,2017,10(2):240
-
[17] 林婉祺.北京市新能源汽车推广及其对能源结构与区域排放的影响研究[D].北京:中国石油大学(北京),2019;LIN Wanqi.Study on new energy vehicle promotion in Beijing and its impacts on energy structure and regional emissions[D].Beijing:China University of Petroleum(Beijing),2019
-
[18] Heeb N V,Forss A M,Saxer C J,et al.Methane,benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades[J].Atmospheric Environment,2003,37(37):5185-5195
-
[19] Randazzo M L,Sodré J R.Cold start and fuel consumption of a vehicle fuelled with blends of diesel oil-soybean biodiesel-ethanol[J].Fuel,2011,90(11):3291-3294
-
[20] Cao Y D.Operation and cold start mechanisms of internal combustion engines with alternative fuels[C]//14th Asia Pacific Automotive Engineering Conference,2007.DOI:10.4271/2007-01-3609
-
[21] Lee D W,Johnson J,Lv J,et al.Comparisons between vehicular emissions from real-world in-use testing and EPA moves estimation[R].Texas Transportation Institute,2012
-
[22] Pan D,Tao L,Sun K,et al.Methane emissions from natural gas vehicles in China[J].Nature Communications,2020,11:4588
-
[23] 环境保护部,国家质量监督检验检疫总局.GB 18352.5—2013轻型汽车污染物排放限值及测量方法(中国第五阶段)[S].北京:中国环境科学出版社,2013;Ministry of Environmental Protection,General Administration of Quality Supervision,Inspection and Quarantine.GB 18352.5-2013 Limits and measurement methods for emissions from light-duty vehicles(China 5)[S].Beijing:China Environmental Science Press,2013
-
[24] Tutuianu M,Bonnel P,Ciuffo B,et al.Development of the world-wide harmonized light duty test cycle(WLTC)and a possible pathway for its introduction in the European legislation[J].Transportation Research Part D:Transport and Environment,2015,40:61-75
-
[25] Chen L,Wang Z,Liu S,et al.Using a chassis dynamometer to determine the influencing factors for the emissions of Euro VI vehicles[J].Transportation Research Part D:Transport and Environment,2018,65:564-573
-
[26] Yang L,Bernard Y,Posada F,et al.Laboratory and on-road testing of exhaust emissions of two modern China 5 light-duty gasoline vehicles[R].ICCT:Hamburg,Germany,2018
-
[27] 国家市场监督管理总局,国家标准化管理委员会.GB/T 19233—2020轻型汽车燃料消耗量试验方法[S].北京:中国标准出版社,2020;State Administration for Market Regulation,Standardization Administration.GB/T 19233-2020 Measurement methods of fuel combustion for light-duty vehicles[S].Beijing:Standards Press of China,2020
-
[28] Yoo J H,Kim D W,Yoo Y S,et al.Study on the characteristics of carbon dioxide emissions factors from passenger cars[J].Transactions of the Korean Society of Automotive Engineers,2009,17(4):10-15
-
[29] Franco V,Kousoulidou M,Muntean M,et al.Road vehicle emission factors development:a review[J].Atmospheric Environment,2013,70:84-97
-
[30] Fonseca N,Casanova J,Valdés M.Influence of the stop/start system on CO2 emissions of a diesel vehicle in urban traffic[J].Transportation Research Part D:Transport and Environment,2011,16(2):194-200
-
[31] Nilrit S,Sampanpanish P.Emission factor of carbon dioxide from in-use vehicles in Thailand[J].Modern Applied Science,2012,6(8):52
-
[32] Essenhigh R H,Eugene Shull H,Blackadar T,et al.Effect of vehicle size and engine displacement on automobile fuel consumption[J].Transportation Research Part A:General,1979,13(3):175-177
-
[33] Zhang S J,Wu Y,Liu H,et al.Historical evaluation of vehicle emission control in Guangzhou based on a multi-year emission inventory[J].Atmospheric Environment,2013,76:32-42
-
[34] Quiros D C,Smith J,Thiruvengadam A,et al.Greenhouse gas emissions from heavy-duty natural gas,hybrid,and conventional diesel on-road trucks during freight transport[J].Atmospheric Environment,2017,168:36-45
-
[35] Bielaczyc P,Woodburn J,Szczotka A.A comparison of carbon dioxide exhaust emissions and fuel consumption for vehicles tested over the NEDC,FTP-75 and WLTC chassis dynamometer test cycles[C]//SAE 2015 World Congress & Exhibition,2015
-
[36] Pavlovic J,Marotta A,Ciuffo B.CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures[J].Applied Energy,2016,177:661-670
-
[37] Bielaczyc P,Szczotka A,Woodburn J.Carbon dioxide emissions and fuel consumption from passenger cars tested over the NEDC and WLTC:an overview and experimental results from market-representative vehicles[J].IOP Conference Series:Earth and Environmental Science,2019,214:012136
-
[38] Wang X W,Fu T Q,Wang C Q,et al.Fuel consumption and emissions at China automotive test cycle for a heavy duty vehicle based on engine-in-the-loop methodology[J].Journal of Physics:Conference Series,2020,1549:022119
-
[39] Ma R Y,He X Y,Zheng Y L,et al.Real-world driving cycles and energy consumption informed by large-sized vehicle trajectory data[J].Journal of Cleaner Production,2019,223:564-574
-
[40] 毋波波.北京市柴油车气态污染物和颗粒物化学组分排放特征研究[D].北京:北京工商大学,2016;WU Bobo.Characterization of gaseous pollutants and the chemical compositions of PM2.5 emitted from on-road China Ⅲ and China Ⅳ diesel vehicles in Beijing,China[D].Beijing:Beijing Technology and Business University,2016
-
[41] 谢岩,廖松地,朱曼妮,等.轻型汽油车稳态工况下的尾气排放特征[J].环境科学,2020,41(7):3112-3120;XIE Yan,LIAO Songdi,ZHU Manni,et al.Emission characteristics of light-duty gasoline vehicle exhaust based on acceleration simulation mode[J].Environmental Science,2020,41(7):3112-3120
-
[42] Wu X M,Zhang S J,Wu Y,et al.Real-world emissions and fuel consumption of diesel buses and trucks in Macao:from on-road measurement to policy implications[J].Atmospheric Environment,2015,120:393-403
-
[43] Zhang H,Yao Y G.Construction of a light-duty vehicle driving cycle based on urban road[J].Journal of Highway and Transportation Research and Development,2019,13(4):95-101
-
[44] Liu B J,Shi Q,He L,et al.A study on the construction of Hefei urban driving cycle for passenger vehicle[J].IFAC:Papers OnLine,2018,51(31):854-858
-
摘要
本研究选取14辆中国目前常用的在用轻型和重型机动车,利用底盘测功机,分别在WLTC (世界轻型车测试程序)和C-WTVC(中国重型商用车辆瞬态循环)工况的冷启动程序下,测试CO2排放因子,同时研究了相应的油耗,并比较不同的影响因素.结果表明:机动车CO2排放因子受到排量、冷热启动、燃料和驾驶路段的影响;机动车在城市路段冷启动条件下油耗最高,导致CO2排放因子更高,比全工况冷启动和城市路段热启动条件下分别高出了26.6%~199.7%和8.3%~35.5%;高排量重型柴油货车在市区油耗更高,导致CO2排放因子大幅增加,因此禁止大排量重型柴油货车进入市区能有效控制CO2排放;使用液化石油气替代燃油会降低机动车CO2的排放,液化石油气公交车和出租车在城市路段的CO2排放分别降低37.2%和12.1%,而高速路段则分别降低51.8%和20.3%;当前更为符合道路实际的WLTC工况依旧会对中国实际道路轻型机动车CO2排放因子和油耗分别产生31%~46%和17.7%~26.8%的低估.为了得到更为准确的排放因子数据,我国须加快工况的本土化改良.
Abstract
China strives to achieve carbon emission peaking by 2030,and the exhaust from vehicles on road are an important source of greenhouse gas (GHG) emissions.Due to the upgrading of vehicle emission limits and fuel standards,it is particularly necessary to study the GHG emission factors of currently in-use vehicles.In this study,14 in-use light- and heavy-duty vehicles in China were tested for CO2 (carbon dioxide) Emission Factors (EFs) under the cold start procedure of WLTC (Worldwide harmonized Light-duty Test Cycle) and C-WTVC (China-World Transient Vehicle Cycle) operating conditions respectively using chassis dynamometer,and the corresponding fuel consumptions as well as influencing factors were studied.The results show that the CO2 EFs of vehicles are affected by displacement,hot/cold start,fuel and driving condition.Vehicles have the highest fuel consumption under cold start conditions on urban roads,resulting in higher CO2 EFs,which are 26.6%-199.7% and 8.3%-35.5% higher than those under full working cold start and hot start conditions on urban roads,respectively.Meanwhile,the higher fuel consumption of high-displacement heavy-duty diesel trucks in urban traffic condition leads to a significant increase in CO2 EFs,so banning high-displacement heavy-duty diesel trucks from entering urban areas can effectively control CO2 emissions.Using LPG (Liquefied Petroleum Gas) as a fuel substitute can reduce CO2 emissions from vehicles.LPG buses and taxis would reduce CO2 EFs by 37.2% and 12.1% on urban roads,and by 51.8% and 20.3% on highway roads.The current WLTC conditions,which are more in line with actual road conditions,still underestimate the CO2 EFs and fuel consumption of light-duty vehicles on Chinese roads by 31%-46% and 17.7%-26.8%,therefore to obtain more accurate vehicle emission data,we must accelerate the localization of vehicle test cycles.
Keywords
vehicles ; CO2 ; emission factors (EFs) ; bench testing ; greenhouse gas ; fuel consumption