-
0 引言
-
PM2.5是重要的大气污染物之一,可显著降低大气能见度,危害人体健康.高浓度的PM2.5已成为我国大型城市群如京津冀、长三角和珠三角地区灰霾污染的主要原因,严重阻碍了城市和区域的可持续发展[1].2013年大气“国十条”实施以来,我国大型城市群的PM2.5污染控制取得了显著成效,但是,2017年全国338个地级及以上城市中仍有239个城市环境空气质量尚未达标.在对大型城市、城市群PM2.5污染特征及来源研究[2-5]较为深入的同时,占全国总人口数75.2%的中小型城市针对PM2.5的相关研究才刚起步,这些地区的PM2.5污染特征及来源往往不同于大型城市群[6].摸清中小城市PM2.5污染源,防控大气灰霾污染,对提高我国空气质量至关重要,已成为我国大气污染防治的重点和难点工作之一.
-
当前我国城市地区的PM2.5来源解析研究仍多基于离线采样分析模式,时间分辨率低(多为1d),难以应对小时间尺度的突发性污染事件.基于在线监测手段开展源解析研究主要使用的是质谱技术,如气溶胶质谱(AMS)和单颗粒质谱(SPAMS)等.其中:AMS监测成本较高,且主要针对1 μm以下颗粒物中的非难熔性化学组分的测量;SPAMS可提供基于PM2.5数浓度的来源解析,但难以对颗粒物组分及源贡献的质量浓度给予量化表征.因此,基于商业化在线仪器组合开展PM2.5的全组分同步测量并基于受体模式开展在线源解析研究,是同时获取高时间分辨率的PM2.5化学组分和来源信息的可行方式,然目前仍少有报道.
-
阳江市地处广东省西南沿海,东与珠三角城市接壤,南邻南海,是广东省重要的交通要塞和出海口,也是我国著名的滨海生态旅游城市,2016年全市常住人口252.84万,GDP为1 270.76亿元,排名广东省第15位,是典型的中小型沿海城市.阳江市能源消耗以电能为主.受到来自海洋清洁气团和来自珠三角城市群等污染气团的共同或交替作用影响,阳江市空气质量常年以清洁天气为主,但秋冬季节多发PM2.5为首要污染物的轻度污染甚至中度污染.因此,本研究利用在线监测仪器组对PM2.5的全组分(含碳组分、无机水溶性离子及金属元素)进行同步测量,获得了时间分辨率为1h的PM2.5化学组分信息,并结合正交矩阵因子分析模型开展源解析研究.本研究旨在摸清阳江市PM2.5污染特征及主要来源, 为同类型城市提供PM2.5精细化溯源思路.
-
1 实验仪器与研究方法
-
1.1 观测地点和时间
-
阳江市PM2.5历史监测数据显示,全年峰值出现在当年的12月,并延续至次年的1—2月.因此,为探究阳江市PM2.5污染特征及污染过程时段的来源特征,本研究将采样时段选取在2017年12月25日至2018年1月16日.参照中国环境监测总站《环境空气颗粒物源解析监测技术方法指南》的要求,结合阳江市现有场地的实际情况,采样点选址在阳江市阳东区陶然空气监测常规子站附近(21°52′30″N,112°0′45″E),采样点位置如图1所示.观测点离地面高约15m,四周开阔,属于城市监测点,远离工业区,符合监测需求.
-
图1 阳江市地理位置及观测参数
-
Fig.1 Location of Yangjiang and monitored parameters
-
1.2 采样设备及原理
-
PM2.5、O3、SO2、NO2和气象参数等数据均为陶然空气监测常规子站监测数据,由阳江市生态环境监测站提供.
-
NO-3、SO2-4、NH+4、Na+、K+和Cl-等水溶性离子的监测采用北京天虹仪器有限公司生产的TH-PK303系列气态污染物与气溶胶在线分析仪(GAC-IC),时间分辨率为0.5h,仪器原理可参见陈仕意等[7]的陈述.
-
OC、EC的监测使用聚光科技(杭州)股份有限公司生产的OC/EC分析仪(热/光分析方法),时间分辨率为1h.仪器原理可参见Bauer等[8]的陈述.
-
金属元素监测使用聚光科技(杭州)股份有限公司生产的AMMS100系列重金属在线监测仪,实时在线监测PM2.5中主要金属元素的质量浓度.仪器基于滤膜带采样方式,通过滤膜过滤、富集空气中的重金属污染物,采用X射线荧光(XRF)方法测定滤膜带上颗粒物中金属元素的含量.时间分辨率1h.
-
在线加强观测期间实行严格的质量保证/质量控制程序,图2a为碳质组分、水溶性离子和金属元素叠加重构的PM2.5质量浓度与监测子站测量的总PM2.5质量浓度的比对,可知两者具有良好的相关性,在线监测数据可准确反映采样期间PM2.5的污染特征.同时,图2b显示阳离子与阴离子的摩尔浓度具有良好的线性关系,拟合曲线斜率接近于1(R2=0.95,P <0.01),说明观测时段阳江市PM2.5中的阴阳离子平衡较好,也间接表明本研究观测结果是准确合理的.
-
1.3 正交矩阵因子分析法
-
正交矩阵因子分析法(Positive Matrix Factorization,PMF) 是一种多变量因子分析方法[9],在环境领域常用于污染物来源解析.该方法将样本数据矩阵X(n×m) 分解为两个矩阵,分别为源成分谱矩阵F (k×j) 和源贡献矩阵G (j×i),E (i×j) 为样本的观测值与模拟值之间的残差矩阵,具体表示方法如下:X=GF +E.通过寻求最小目标函数Q的值,确定污染源成分谱矩阵F和污染源贡献矩阵G,达到目标解析结果.
-
式中:Xij为第i天第j种物质在受体的质量浓度;gik为第i天第k个因子对于受体的贡献;fkj为第j种物质在第k个因子的分数;eij为第i天第j种物质的残余;Sij为X的标准偏差;p为因子数.
-
PMF方法考虑了测量数据的不确定度,并且因为限制所有数据为正值,排除了解出因子为负值而不具有物理意义的情况.
-
2 结果与讨论
-
2.1 大气污染特征
-
本研究参照国家空气质量标准,定义24h均值质量浓度低于35 μg·m-3为清洁过程,超过75 μg·m-3为污染过程,故选取2017年12月26日0时至30日0时(污染过程1)和2018年1月1日0时至3日12时(污染过程2)为污染过程,2018年1月10日0时至13日0时为清洁过程,2018年1月6日0时至9日0时为降水时段.
-
由表1可见,采样期间PM2.5、O3、SO2、NO2平均质量浓度分别为56.50±40.05、51.03±38.38、15.10±10.97和41.04±20.85 μg·m-3,污染过程1和2期间的PM2.5平均质量浓度分别为106.11±38.04和87.46±36.17 μg·m-3,分别是清洁过程的3.66倍和3.02倍,PM2.5与PM10质量浓度的比值分别为0.80±0.12和0.75±0.16,也明显高于清洁过程的0.59±0.11,表明污染时段受二次转化生成的影响高于清洁时段,其他污染物浓度也高于清洁过程.
-
区域环流形势和气象条件的变化是PM2.5污染形成至关重要的因素,由图3a所示,采样期间阳江市主导风向为东北风,大气环流相对稳定.平均风速1.81±0.73m·s-1,整体相对静稳.与清洁过程相比,污染过程1和污染过程2时段的风速相对更低,温度和相对湿度明显更高,同时更高的O3和NO2浓度表明污染时段的大气氧化性更强.更静稳的气象条件和更强的大气氧化性将促使二次污染物的形成和积累,进而导致污染的形成.
-
2.2 PM2.5中化学组分变化特征
-
整体上,ρ(OM)(ρ(OM)=1.6×ρ(OC))[10] 的平均质量浓度为17.15±1.80 μg·m-3,是采样时段PM2.5化学组分中占比最大的,占PM2.5质量浓度的32.75%;其次为硝酸盐NO-3(13.40±0.67 μg·m-3),占PM2.5质量浓度的25.59%,再次为硫酸盐SO2-4(8.59±12.52 μg·m-3)和铵盐NH+4(6.48±0.22 μg·m-3),分别占PM2.5质量浓度的16.41%和12.37%.可以看出采样时段阳江市NO-3质量浓度明显高于SO2-4.NO-3、SO2-4和NH+4共称为二次无机离子(SIA),共占PM2.5质量浓度的54.37%,这与Yue等[11]在江门地区的监测结果相近.其他组分EC、Cl-及痕量组分(包括Na+、K+和所测到金属元素)分别占总质量浓度的4.82%、3.37%、4.69%.
-
污染过程1和2时段PM2.5中各组分质量浓度明显高于清洁过程(图3a),OM、NO-3、SO2-4、NH+4与其清洁过程中质量浓度的比值分别是2.66(污染过程1比清洁过程)/2.16(污染过程2比清洁过程,下同)、6.81/6.22、3.11/3.01、4.44/4.07,可看出NO-3的增量明显高于其他组分.在成分占比上,如图3c所示,相比清洁过程,污染过程1和2时段的SO2-4质量浓度的占比几乎无变化(清洁过程为17.75%、污染过程1和2分别为16.21%、17.54%);NH+4占比有较明显变化,由清洁过程的10.62%分别增至污染过程1和2的13.25%、14.38%;OM占比有所下降,由清洁过程的39.10%分别降至污染过程1和2的29.63%、26.81%,而NO-3的占比变化非常显著,约为清洁过程期间NO-3占比(14.68%)的两倍,分别达到了29.38%和30.81%,等同或超过OM的占比, 从污染生消过程看NO-3是污染形成的关键因素,需重点控制.
-
图3 采样时段PM2.5成分、气象要素及化学特征概览a.化学成分及气象要素时间序列;b.OC/EC比值分布直方图;c.不同时段PM2.5成分占比
-
Fig.3 Overview of meteorological elements and chemical composition of PM2.5 a.time series of meteorological elements and chemical composition of PM2.5; b.ratio of OC to EC;c.mass fractions of main compositions of PM2.5 in each episode
-
1)ρ(OC)/ρ(EC)分析:不同燃烧源排放出的ρ(OC)/ρ(EC)存在较大差异,因而ρ(OC)/ρ(EC)常用于初步研判碳质组分的主要来源.如ρ(OC)/ρ(EC)为1.00~4.20表明存在柴油和汽油车的尾气排放[12],为2.50~10.50时表明存在燃煤排放[2],为3.80~13.20时则表明存在生物质燃烧排放[3].本研究采样期间,OC与EC具有正相关性(R2=0.54,P <0.01).如图3b显示,ρ(OC)/ρ(EC)主要分布在2.00~6.00(占比63.69%),平均为5.50,表明本研究区域碳组分受到机动车排放、燃煤和生物质燃烧排放的共同影响,但也可能是源自二次有机碳贡献.基于EC示踪法对SOC进行估算,为减少计算误差,本研究先扣除降雨时段的样本,然后按ρ(OC)/ρ(EC)从小到大排序,并选取比值最小的5%所对应的OC、EC做线性拟合,取其斜率作为一次排放OC与EC的比值[4],比值为2.11,结果显示,采样时段阳江市ρ(SOC)/ρ(OC)平均为0.53,与深圳地区的观测结果相当(0.57)[1],且在污染过程1和2时段ρ(SOC)/ρ(OC)分别为0.57和0.59,明显高于清洁日的0.46,表明污染时段VOCs二次转化速率有所增强.
-
2)ρ(NO-3)/ρ(SO2-4):ρ(NO-3)/ρ(SO2-4)常用于判断固定源(主要为燃煤)和移动源(机动车尾气排放)对大气污染的相对贡献,当ρ(NO-3)/ρ(SO2-4)大于1时,说明移动源对大气颗粒物质量浓度的贡献大于固定源;而当ρ(NO-3)/ρ(SO2-4)小于1时,则相反[5].本研究采样时段ρ(NO-3)/ρ(SO2-4)均值为1.54,高于广州[13]、上海[14]和北京[15],与苏州[16]和成都[17]较为接近,说明阳江市冬季移动源对大气污染的贡献十分突出,改善空气质量需加强对移动源的控制.
-
3)NOR和SOR:氮氧化率(NOR,量值记为ηNOR)和硫氧化率(SOR,量值记为ηSOR)常用来衡量大气中NO2和SO2向NO-3、SO2-4的二次转化程度.计算公式如下:
-
其中, 表示非海盐硫酸盐.
-
采样时段阳江市SOR和NOR均值分别为0.28和0.17,均大于0.1,且污染过程1和2时段SOR分别为0.27和0.36,NOR分别为0.27和0.31,明显高于清洁日的0.21和0.09,表明阳江市大气污染时段的二次转化程度更高,且更有利于NO-3的二次转化生成.
-
2.3 PM2.5来源解析
-
2.3.1 来源识别
-
基于阳江市PM2.5在线观测全组分数据,选取了14种特征组分作为PMF输入数据,并根据EPA PMF指导方法计算了每种组分的不确定度.本研究中取测量误差率为20%,根据不同仪器检测限进行计算.将PM2.5特征组分质量浓度和不确定度一同输入模型,经反复模拟,发现模型输出因子数为9个时(图4),每个源的特征解释最为合理,并且可以很好地解释输入的PM2.5组分浓度(斜率=0.97,R2=0.98,P <0.01).具体因子描述如下:
-
1)燃煤源
-
因子1中Cl-的特征值最高,同时伴随较高的SO2-4、NH+4、EC和Fe.有研究指出珠三角地区PM2.5中的Cl-主要来自燃煤排放的氯化氢和氨气在大气中快速结合形成氯化铵[18].SO2-4、NH+4、EC和Fe也同样与燃煤排放关系密切,因此因子1被识别为燃煤源.观测期间燃煤源对阳江市PM2.5的分担率较为稳定,平均为6.36%.
-
2)SO2二次转化源
-
因子2中SO2-4的特征值最高,同时伴随较高的NH+4和OM,与之相近的因子4中则是NO-3的特征值最高.大气中的SO2和NOx在大气中氧化,并与氨气中和生成 (NH4)2SO4和NH4NO3,期间VOCs同步氧化为二次有机气溶胶,因此因子2被识别为SO2二次转化源,因子4被识别为NOx二次转化源.观测期间SO2二次转化源的分担率为13.54%,NOx二次转化源则高达27.18%,是阳江市PM2.5的最大贡献源.
-
3)扬尘源
-
因子3中Ca、Fe的特征值最高,Ca是水泥等建筑材料的特征元素[19],同时还有Mg2+及有机物的贡献,因此该源被认定为包含建筑尘的扬尘源.观测期间扬尘源的贡献仅为3.19%.
-
4)NOx二次转化源
-
因子4识别为NOx二次转化源,主要理由已在因子2中描述.
-
5)生物质燃烧
-
因子5中K+的特征值最突出,同时伴随较高的OM和EC.K+是生物质燃烧的标识物[20],生物质燃烧也会排放OM和EC,因此该因子被识别为生物质燃烧源.观测期间生物质燃烧源的分担率为7.88%.
-
6)海洋源
-
因子6中Na+和Mg2+的特征值突出,还有一定Cl-及SO2-4的贡献.阳江地处沿海地带,这些特征离子可能来自海盐,因此因子6被识别为海洋源.观测期间海洋源的平均贡献为6.77%.
-
7)工业源
-
因子7中,含有金属元素Zn和Pb等工业粉尘的特征明显,此外还有一定Ca、Fe及硫酸盐和硝酸盐的贡献.Zn、Pb常常来源于轧钢厂等工业金属冶炼排放[21],阳江市工业以五金业为主,也有这些金属元素排放.因此该因子被识别为工业源.观测期间该源的分担率为4.96%.
-
8)机动车源
-
城市中EC主要来源于机动车尾气排放,因子8中EC和OM特征值突出,该因子中EC占总EC的56.85%,因此该因子被识别为机动车排放源.观测期间该源的分担率为15.11%.
-
图4 PMF模型输出的PM2.5各源特征值及贡献浓度
-
Fig.4 PM2.5 soure profiles obtained by PMF
-
9)船舶
-
V是重油燃烧排放的标识物[22],在因子9中V的特征值最高,因此被判定为重油燃烧源.在广东沿海,几乎只有船舶使用重油作为燃料,因此认定为船舶源.观测期间该源的分担率为4.32%.
-
10)VOCs二次转化源
-
在PMF受体模型结果中,有机物通常被分配到许多类源中,如机动车、生物质燃烧等一次源,而二次有机物则被分配到二次硫酸盐与二次硝酸盐的因子中,这些有机物被认为是在大气氧化剂作用下,与SO2、NOx同步被氧化的VOCs生成的二次有机物.观测期间VOCs二次转化源的分担率为10.68%.
-
基于PMF模型源解析结果,二次转化源是阳江市冬季PM2.5的首要贡献源,平均为51.41%,其中NOx二次转化源的贡献最高,占27.18%.而一次排放源中机动车源的贡献量最大,达15.11%.
-
图5显示了我国部分城市PM2.5主要来源的分担率情况.根据国务院《关于调整城市规模划分标准的通知》,按城区常住人口对城市类型进行粗略划分[23], 并且比较了基于受体模型(PMF、化学质量平衡模型CMB及多元线性模型ME-2等)解析出的主要污染源对城市PM2.5的贡献差异,发现阳江市二次转化源的分担率明显高于其他城市,与特大城市(北京、天津、广州、佛山、深圳、东莞)、大型城市(南京)和经济发达的中等城市(厦门和海口)一样,阳江市机动车源是分担率最大的一次排放源,须重点关注.与其他中等规模城市(海口、厦门、菏泽、临安)相比,阳江市燃煤源的分担率相对偏低,但阳江市船舶、海洋源对PM2.5的分担率相对更高.分担率与地区产业结构、能源消耗及居民生活习性有较大关联.
-
Fig.5 PM2.5 sources of some Chinese cities based on receptor models,and line colors represent city sizes
-
2.3.2 污染过程来源分析
-
基于在线数据的来源解析最突出优势在于能解析瞬时污染生消过程,采样时段阳江市PM2.5来源结构如图6所示.从各污染源的日变化特征看,NOx二次转化源白天出现低谷,夜间相对贡献更高,SO2二次转化源和VOCs二次转化源具有相近的二次转化机制,除清洁过程外,均表现出下午出现峰值的光氧化特征.而机动车源则表现出较明显的早晚双峰特征.
-
污染过程1形成前,明显地受生物质燃烧的影响,生物质燃烧源分担了PM2.5质量浓度的27.65%(2017年12月25日).随后可能因气象条件极有利于NOx二次转化生成NO-3,PM2.5快速累积形成污染,两次污染时段,二次转化源均为分担率最大的源,分别达到56.38%和66.21%,期间NOx二次转化源均为最大的单一分担源,分别高达33.15%和36.96%,是污染形成的首要贡献源.清洁过程中二次转化源仍是分担率最大的源,但仅占36.01%,而机动车源则成为分担率最大的单一源,高达20.27%,其次为生物质燃烧源和海洋源,分担率分别为9.84%和7.71%.降水时段与清洁过程相似,但机动车源和燃煤源的分担率更高,分别为27.57%和13.40%,表现出较强的当地排放特征.
-
此外,结合气象数据可以发现阳江市具有典型的沿海城市特征,来自海洋方向气流的影响下,阳江市的空气质量会有明显改善,如12月27日18—20时、12月29日14—19时、1月3日14—22时及1月15日14—22时,在偏东或南向海风影响下PM2.5质量浓度均迅速大幅度下降,此时海洋源和船舶排放源的分担率相对增强,平均分别增至9.96%和11.14%,而二次转化源的强度则会明显减弱.
-
纵观整个采样期间的污染特征及来源,可以发现NOx二次转化源分担率的变化与PM2.5质量浓度的变化趋势有较好的一致性,当PM2.5质量浓度升高时,NOx二次转化源的分担率就会明显增大,因此NOx二次转化源是阳江市PM2.5污染防治的关键控制源.鉴于污染期间较高的NOR值,城市NOx主要源自机动车排放,同时机动车源是阳江市PM2.5源贡献中最为主要一次排放源,建议重点加强对NOx排放源,尤其是机动车排放的控制.考虑到受体模型解析出的NOx二次转化源未排除外来传输的二次产物贡献,因此仍需加强联防联控,降低污染传输.
-
图6 PM2.5主要来源贡献的时间序列及污染过程和清洁过程平均贡献占比和日变化
-
Fig.6 Variation of source contributions to PM2.5,associated with source fractions and diurnal patterns in polluted,clean,and precipitation periods
-
3 结论
-
基于阳江市2017年12月25日至2018年1月16日的PM2.5在线观测数据,本文对阳江市冬季PM2.5的污染特征及来源进行了解析,主要结果表明:
-
1) 采样时段阳江市PM2.5日均质量浓度为56.50±40.05 μg·m-3,其中OM、NO-3、SO2-4、 NH+4和EC的质量浓度占比分别为32.75%、25.59%、16.41%、12.37%和4.82%,NO-3的质量浓度明显高于SO2-4.
-
2) 相对于固定源,移动源对阳江市大气PM2.5的贡献更为突出;同时生物质燃烧对阳江市碳质组分具有较大的贡献.
-
3)污染过程时段,NO-3质量浓度和占比分别是清洁过程时段的6倍和2倍以上,增量明显高于其他组分,表明NO-3是阳江市PM2.5污染形成的关键组分;同时,更高的NOR、SOR及ρ(SOC)/ρ(OC),表明污染时段污染前体物的二次转化对PM2.5的贡献更为显著.
-
4)PMF源解析结果表明,二次转化源是阳江市冬季PM2.5最为主要的污染源,其分担率平均为51.41%,其中NOx二次转化源分担了27.18%,是分担率最大的二次转化源,机动车源的分担率平均为15.11%,是占比最大的一次排放源.从污染生消过程来看,NOx二次转化源是阳江市大气PM2.5污染形成的主要来源,综合考虑,加强机动车等NOx排放源的管控是阳江市大气PM2.5污染防控较为有效的举措.
-
参考文献
-
[1] 黄晓锋,云慧,宫照恒,等.深圳大气PM2.5来源解析与二次有机气溶胶估算[J].中国科学:地球科学,2014,44(4):723-734;HUANG Xiaofeng,YUN Hui,GONG Zhaoheng,et al.Source apportionment and secondary organic aerosol estimation of PM2.5 in an urban atmosphere in China [J].Science China:Earth Sciences,2014,44(4):723-734
-
[2] Chen Y J,Zhi G R,Feng Y L,et al.Measurements of emission factors for primary carbonaceous particles from residential raw-coal combustion in China[J].Geophysical Research Letters,2006,33(20):L20815
-
[3] 徐足飞,曹芳,高嵩,等.南京北郊秋季PM2.5碳质组分污染特征及来源分析[J].环境科学,2018,39(7):3033-3041;XU Zufei,CAO Fang,GAO Song,et al.Characteristics and source analysis of carbonaceous components of PM2.5 during autumn in the northern suburb of Nanjing[J].Environmental Science,2018,39(7):3033-3041
-
[4] 刘素,马彤,杨艳,等.太原市冬季PM2.5化学组分特征与来源解析[J].环境科学,2019,40(4):1537-1544;LIU Su,MA Tong,YANG Yan,et al.Chemical composition characteristics and source apportionment of PM2.5 during winter in Taiyuan[J].Environmental Science,2019,40(4):1537-1544
-
[5] Arimoto R,Duce R A,Savoie D L,et al.Relationships among aerosol constituents from Asia and the north Pacific during PEM-west A[J].Journal of Geophysical Research:Atmospheres,1996,101(D1):2011-2023
-
[6] Liu B S,Wu J H,Zhang J Y,et al.Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China[J].Environmental Pollution,2017,222:10-22
-
[7] 陈仕意,曾立民,董华斌,等.华北地区乡村站点(曲周)夏季PM2.5中二次无机组分的生成机制与来源解析[J].环境科学,2015,36(10):3554-3565;CHEN Shiyi,ZENG Limin,DONG Huabin,et al.Transformation mechanism and sources of secondary inorganic components in PM2.5 at an agriculture site(Quzhou)in the North China Plain in summer[J].Environmental Science,2015,36(10):3554-3565
-
[8] Bauer J J,Yu X Y,Cary R,et al.Characterization of the sunset semi-continuous carbon aerosol analyzer[J].Journal of the Air & Waste Management Association,2009,59(7):826-833
-
[9] Paatero P,Tapper U.Positivematrix factorization:a non-negative factor model with optimal utilization of error estimates of data values[J].Environmetrics,1994,5(2):111-126
-
[10] Turpin B J,Lim H J.Species contributions to PM2.5 mass concentrations:revisiting common assumptions for estimating organic mass[J].Aerosol Science and Technology,2001,35(1):602-610
-
[11] Yue D L,Zhong L J,Zhang T,et al.Pollution properties of water-soluble secondary inorganic ions in atmospheric PM2.5 in the Pearl River Delta region[J].Aerosol and Air Quality Research,2015,15(5):1737-1747
-
[12] 段卿,安俊琳,王红磊,等.南京北郊夏季大气颗粒物中有机碳和元素碳的污染特征[J].环境科学,2014,35(7):2460-2467;DUAN Qing,AN Junlin,WANG Honglei,et al.Pollution characteristics of organic and elemental carbon in atmospheric particles in Nanjing northern suburb in summer[J].Environmental Science,2014,35(7):2460-2467
-
[13] Tan J H,Duan J C,Chen D H,et al.Chemical characteristics of haze during summer and winter in Guangzhou[J].Atmospheric Research,2009,94(2):238-245
-
[14] Ming L L,Jin L,Li J,et al.PM2.5 in the Yangtze River Delta,China:chemical compositions,seasonal variations,and regional pollution events[J].Environmental Pollution,2017,223:200-212
-
[15] 丛晓光,程玲珑,王莉莉,等.北京城区灰霾期间大气PM2.5中水溶性离子污染特征及来源研究[J].首都师范大学学报(自然科学版),2017,38(1):49-57;CONG Xiaoguang,CHENG Linglong,WANG Lili,et al.The mass concentrantion levels,diurnal variation and source apportionment of water-soluble inorganic ions in PM2.5 during haze days in Beijing urban area[J].Journal of Capital Normal University(Natural Science Edition),2017,38(1):49-57
-
[16] 王念飞,陈阳,郝庆菊,等.苏州市PM2.5中水溶性离子的季节变化及来源分析[J].环境科学,2016,37(12):4482-4489;WANG Nianfei,CHEN Yang,HAO Qingju,et al.Seasonal variation and source analysis of the water-soluble inorganic ions in fine particulate matter in Suzhou[J].Environmental Science,2016,37(12):4482-4489
-
[17] 吴明,吴丹,夏俊荣,等.成都冬季PM2.5化学组分污染特征及来源解析[J].环境科学,2019,40(1):76-85;WU Ming,WU Dan,XIA Junrong,et al.Analysis of pollution characteristics and sources of PM2.5 chemical components in Chengdu in winter[J].Environmental Science,2019,40(1):76-85
-
[18] Zou B B,Huang X F,Zhang B,et al.Source apportionment of PM2.5 pollution in an industrial city in southern China[J].Atmospheric Pollution Research,2017,8(6):1193-1202
-
[19] 孙天乐,邹北冰,黄晓锋,等.深圳市大气PM2.5来源解析[J].中国环境科学,2019,39(1):13-20;SUN Tianle,ZOU Beibing,HUANG Xiaofeng,et al.Source apportionment of PM2.5 pollution in Shenzhen [J].China Environmental Science,2019,39(1):13-20
-
[20] Yamasoe M A,Artaxo P,Miguel A H,et al.Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin:water-soluble species and trace elements[J].Atmospheric Environment,2000,34(10):1641-1653
-
[21] 魏哲,侯立泉,魏巍,等.结合WRF/Chem和PMF方法的邯郸市PM2.5源解析[J].环境科学与技术,2017,40(11):67-74;WEI Zhe,HOU Liquan,WEI Wei,et al.Source apportionment of PM2.5 in Handan city using a combined method of WRF/Chem and PMF model[J].Environmental Science & Technology,2017,40(11):67-74
-
[22] 元洁,刘保双,程渊,等.2017年1月天津市区PM2.5化学组分特征及高时间分辨率来源解析研究[J].环境科学学报,2018,38(3):1090-1101;YUAN Jie,LIU Baoshuang,CHENG Yuan,et al.Study on characteristics of PM2.5 and chemical components and source apportionment of high temporal resolution in January 2017 in Tianjin urban area[J].Acta Scientiae Circumstantiae,2018,38(3):1090-1101
-
[23] 刘浩,马琳.新标准下中国城市的规模划分和时空演变[J].管理现代化,2019,39(6):65-68;LIU Hao,MA Lin.City size hierarchy in China based on the new standard[J].Modernization of Management,2019,39(6):65-68
-
[24] Zíková N,Wang Y G,Yang F M,et al.On the source contribution to Beijing PM2.5 concentrations[J].Atmospheric Environment,2016,134:84-95
-
[25] 吴虹,张彩艳,王静,等.青岛环境空气PM10和PM2.5污染特征与来源比较[J].环境科学研究,2013,26(6):583-589;WU Hong,ZHANG Caiyan,WANG Jing,et al.Comparative study on pollution characteristics and source apportionment of PM10 and PM2.5 in Qingdao[J].Research of Environmental Sciences,2013,26(6):583-589
-
[26] 施双双.长三角典型地区冬季气溶胶来源解析及粒径分布特征[D].南京:南京信息工程大学,2018;SHI Shuangshuang.Source apportionment and size distribution of aerosol over typical areas of Yangtze River Delta in winter[D].Nanjing:Nanjing University of Information Science & Technology,2018
-
[27] Li M R,Hu M,Guo Q F,et al.Seasonal source apportionment of PM2.5 in Ningbo,a coastal city in southeast China[J].Aerosol and Air Quality Research,2018,18(11):2741-2752
-
[28] Zhang N N,Zhuang M Z,Tian J,et al.Development of source profiles and their application in source apportionment of PM2.5 in Xiamen,China[J].Frontiers of Environmental Science & Engineering,2016,10(5):1-13
-
[29] 宋娜,徐虹,毕晓辉,等.海口市PM2.5和PM10来源解析[J].环境科学研究,2015,28(10):1501-1509;SONG Na,XU Hong,BI Xiaohui,et al.Source apportionment of PM2.5 and PM10 in Haikou[J].Research of Environmental Sciences,2015,28(10):1501-1509
-
[30] Tan J H,Duan J C,Ma Y L,et al.Long-term trends of chemical characteristics and sources of fine particle in Foshan city,Pearl River Delta:2008-2014[J].Science of the Total Environment,2016,565:519-528
-
[31] Huang X F,Zou B B,He L Y,et al.Exploration of PM2.5 sources on the regional scale in the Pearl River Delta based on ME-2 modeling[J].Atmospheric Chemistry and Physics,2018,18(16):11563-11580
-
摘要
基于2017年12月25日至2018年1月16日1 h时间分辨率的在线监测数据,对华南沿海城市——阳江市的大气PM2.5质量浓度、化学组分和来源进行了分析.结果表明,采样时段阳江市PM2.5中主要化学组分为OM、NO-3、SO2-4、NH+4和EC,质量浓度占比分别为32.75%、25.59%、16.41%、12.37%和4.82%.相比清洁过程,两次污染过程期间NO-3质量浓度均为清洁过程时段的6倍以上,增量明显高于其他组分,占比则均为清洁过程时段的2倍以上,分别占29.38%和30.81%.PMF解析结果表明,二次转化源是最主要的源,其分担率高达51.41%,其中NOx二次转化源分担27.18%,是阳江市PM2.5分担率最大的二次转化源.首要的一次排放源是机动车源(15.11%).污染过程期间NOx二次转化源的分担率显著提升,从11.85%分别增至33.15%和36.96%,是阳江市大气PM2.5污染形成的主要原因.本研究表明阳江市冬季PM2.5污染特征已类似于大型和特大城市,即面临严峻的二次污染,应着重加强对硝酸盐的防治,同时注重机动车管控.
Abstract
Based on the online measurements from December 25,2017 to January 16,2018,we investigated the chemical composition and sources of PM2.5 in Yangjiang,a South China coastal city.PM2.5 in Yangjiang mainly consisted of OM,NO-3,SO2-4,NH+4 and EC,with proportions of 32.75%,25.59%,16.41%,12.37% and 4.82% in mass fraction,respectively.In two pollution events,the mass concentration of NO-3 increased to over 6 times of that during clean period,much higher than the increments of other components.The mass fractions of NO-3 in two polluted events increased to 29.38% and 30.81%,over twice of that in clean period.Source apportionment of PM2.5 were performed by Positive Matrix Factorization,which pointed out that secondary formation was the main source/process (51.41%) for PM2.5 in winter in Yangjiang.The secondary formation from NOx,contributing 27.18% to the total PM2.5 mass concentration,was the dominating secondary source.Vehicle exhausts were the biggest primary source (15.11%).In the pollution events,the contribution of the secondary formation from NOx sharply increased from 11.85% to 33.15% and 36.96%,which should be considered as the dominating source of PM2.5 pollution in winter of Yangjiang.This study revealed that,as a coastal city,Yangjiang exhibited similar characteristics to those big cities and mega-cities in terms of the PM2.5 sources,i.e.,dominated by the secondary formation.It suggested that more effort for pollution control should be put into the reduction of nitrates as well as their precursor NOx,meanwhile a persistent control of vehicles in Yangjiang city is recommended.