en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

郭凡婧,女,硕士生,研究方向为环境与土壤微生物学.1354594232@qq.com;

申卫收(通信作者),男,博士,教授,博士生导师,研究方向为土壤氮循环关键微生物过程、农畜牧业氨气与氧化亚氮排放控制机理、农牧废弃物资源化.wsshen@nuist.edu.cn

中图分类号:X511

文献标识码:A

DOI:10.13878/j.cnki.jnuist.2022.01.010

参考文献 1
IPCC.Summary for policymakers[R]//Climate Change 2021:the Physical Science Basis.Cambridge,UK,and New York,USA:Cambridge University Press,2021
参考文献 2
Flato G,Marotzke J,Abiodun B,et al.Evaluation of climate models[R]//IPCC.Climate Change 2013:the Physical Science Basis.Cambridge,UK,and New York,USA:Cambridge University Press,2013
参考文献 3
Prather M J,Holmes C D,Hsu J.Reactive greenhouse gas scenarios:systematic exploration of uncertainties and the role of atmospheric chemistry[J].Geophysical Research Letters,2012,39(9):L09803
参考文献 4
Minschwaner K,Salawitch R J,McElroy M B.Absorption of solar radiation by O2:implications for O3 and lifetimes of N2O,CFCl3,and CF2Cl2[J].Journal of Geophysical Research:Atmospheres,1993,98(D6):10543-10561
参考文献 5
Volk C M,Elkins J W,Fahey D W,et al.Evaluation of source gas lifetimes from stratospheric observations[J].Journal of Geophysical Research:Atmospheres,1997,102(D21):25543-25564
参考文献 6
Kaiser J,Röckmann T,Brenninkmeijer C A M.Wavelength dependence of isotope fractionation in N2O photolysis[J].Physical Chemistry Chemical Physics,2002,4(18):4420-4430
参考文献 7
Prinn R G,Weiss R F,Arduini J,et al.History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment(AGAGE)[J].Earth System Science Data,2018,10(2):985-1018
参考文献 8
Hu H W,Chen D L,He J Z,et al.Microbial regulation of terrestrial nitrous oxide formation:understanding the biological pathways for prediction of emission rates[J].FEMS Microbiology Reviews,2015,39(5):729-749
参考文献 9
Kroezeab A C.The global nitrous oxide budget revisited[J].Greenhouse Gas Measurement and Management,2011,1(1):17-26
参考文献 10
Tian H Q,Xu R T,Canadell J G,et al.A comprehensive quantification of global nitrous oxide sources and sinks[J].Nature,2020,586(7828):248-256
参考文献 11
Baggs E M.Soil microbial sources of nitrous oxide:recent advances in knowledge,emerging challenges and future direction[J].Current Opinion in Environmental Sustainability,2011,3(5):321-327
参考文献 12
Kallenbach C,Rolston D,Horwath W.Cover cropping affects soil N2O and CO2 emissions differently depending on type of irrigation[J].Ecosystems & Environment,2010,137(3/4):251-260
参考文献 13
Wang S W,Shan J,Xia Y Q,et al.Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification:a field experiment over two consecutive rice-growing seasons[J].Science of the Total Environment,2017,593/594:347-356
参考文献 14
Wu D,Senbayram M,Well R,et al.Nitrification inhibitors mitigate N2O emissions more effectively under straw-induced conditions favoring denitrification[J].Soil Biology and Biochemistry,2017,104:197-207
参考文献 15
Nishizawa T,Quan A H,Kai A,et al.Inoculation with N2-generating denitrifier strains mitigates N2O emission from agricultural soil fertilized with poultry manure[J].Biology & Fertility of Soils,2014,50(6):1001-1007
参考文献 16
Domeignoz-Horta L A,Putz M,Spor A,et al.Non-denitrifying nitrous oxide-reducing bacteria:an effective N2O sink in soil[J].Soil Biology & Biochemistry,2016,103:376-379
参考文献 17
Cayuela M L,van Zwieten L,Singh B P,et al.Biochar's role in mitigating soil nitrous oxide emissions:a review and meta-analysis[J].Agriculture,Ecosystems & Environment,2014,191(15):5-16
参考文献 18
Case S D C,McNamara N P,Reay D S,et al.The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil:the role of soil aeration[J].Soil Biology & Biochemistry,2012,51:125-134
参考文献 19
Shaaban M,Van Zwieten L,Bashir S,et al.A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution[J].Journal of Environmental Management,2018,228(15):429-440
参考文献 20
Scheer C,Grace P R,Rowlings D W,et al.Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales,Australia[J].Plant and Soil,2011,345(1/2):47-58
参考文献 21
Suddick E C,Six J.An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation[J].Science of the Total Environment,2013,465:298-307
参考文献 22
Rittl T F,Butterbach-Bahl K,Basile C M,et al.Greenhouse gas emissions from soil amended with agricultural residue biochars:effects of feedstock type,production temperature and soil moisture[J].Biomass Bioenergy,2018,117:1-9
参考文献 23
Buchkina N P,Hüppi R,Leifeld J.Biochar and short-term N2O and CO2 emission from plant residue-amended soil with different fertilisation history[J].Zemdirbyste-Agriculture,2019,106(2):99-106
参考文献 24
Van Z L,Singh B,Joseph S,et al.Biochar and emission of non-CO2 greenhouse gases from soil[M]//Biochar for Environmental Management:Science and Technology.London,UK:Earthscan,2009:227-249
参考文献 25
Verhoeven E,Six J.Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard:an assessment across two years[J].Agriculture,Ecosystems and Environment,2014,191(15):27-38.DOI:10.1016/j.agee.2014.03.008
参考文献 26
Clough T J,Bertram J E,Ray J L,et al.Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil[J].Soil Science Society of America Journal,2010,74(3):852-860
参考文献 27
Lehmann J,Joseph S.Biochar for environmental management:an introduction[M]//Biochar for Environmental Management:Science and Technology.London,UK:Earthscan,2009:1-11
参考文献 28
Sombroek W G.Amazon soils:a reconnaissance of the soils of the Brazilian Amazon region[J].Revista Geográfica,1967,133(4):550
参考文献 29
Kim K H,Kim J Y,Cho T S,et al.Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine(Pinus rigida)[J].Bioresource Technology,2012,118:158-162
参考文献 30
Wu Z,Zhang Q Q,Zhang X,et al.Biochar-enriched soil mitigated N2O and NO emissions similarly as fresh biochar for wheat production[J].Science of the Total Environment,2020,701:134943
参考文献 31
Godlewska P,Schmidt H P,Yong S O,et al.Biochar for composting improvement and contaminants reduction:a review[J].Bioresource Technology,2017,246:193-202
参考文献 32
Zhang X Y,Gao B,Fang J E,et al.Chemically activated hydrochar as an effective adsorbent for volatile organic compounds(VOCs)[J].Chemosphere,2019,218:680-686
参考文献 33
Yin G C,Song X W,Tao L,et al.Novel Fe-Mn binary oxide-biochar as an adsorbent for removing Cr(Ⅲ)from aqueous solutions[J].Journal of Geophysical Research:Atmospheres,2020,389:124465
参考文献 34
Fang Z,Gao Y R,Bolan N,et al.Conversion of biological solid waste to graphene-containing biochar for water remediation:a critical review[J].Chemical Engineering Journal,2020,390:124611
参考文献 35
Lu L,Yu W T,Wang Y F,et al.Application of biochar-based materials in environmental remediation:from multi-level structures to specific devices[J].Biochar,2020,2:1-13
参考文献 36
Chen H B,Xing Y,Wang H L,et al.Animal carcass-and wood-derived biochars improved nutrient bioavailability,enzyme activity,and plant growth in metal-phthalic acid ester co-contaminated soils:a trial for reclamation and improvement of degraded soils[J].Journal of Environmental Management,2020,261(3):110246
参考文献 37
Bandara T,Franks A,Xu J M,et al.Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils[J].Critical Reviews in Environmental Science and Technology,2019,50(4):903-978
参考文献 38
Wu P,Ata-Ul-Karim S T,Singh B P,et al.A scientometric review of biochar research in the past 20 years(1998-2018)[J].Biochar,2019,27(1):23-43
参考文献 39
Cao X D,Ma L N,Gao B,et al.Dairy-manure derived biochar effectively sorbs lead and atrazine[J].Environmental Science & Technology,2009,43(9):3285-3291
参考文献 40
Jiang T Y,Jiang J,Xu R K,et al.Adsorption of Pb(Ⅱ)on variable charge soils amended with rice-straw derived biochar[J].Chemosphere,2012,89(3):249-256
参考文献 41
Li Y F,Hu S D,Chen J H,et al.Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions:a review[J].Plant and Soil,2018,18(2):546-563
参考文献 42
Fungo B,Lehmann J,Kalbitz K,et al.Ammonia and nitrous oxide emissions from a field Ultisol amended with tithonia green manure,urea,and biochar[J].Biology and Fertility of Soils,2019,55(2):135-148
参考文献 43
Zhang A F,Liu Y M,Pan G X,et al.Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain[J].Plant and Soil,2012,351(1/2):263-275
参考文献 44
Rondon M A,Ramirez J A,Lehmann J.Greenhouse gas emissions decrease with charcoal additions to tropical soils[C]//Proceedings of the 3rd USDA Symposium on Greenhouse Gases & Carbon Sequestration in Agriculture and Forestry,2005:21-24
参考文献 45
Wang H,Yi H T,Zhang X,et al.Biochar mitigates greenhouse gas emissions from an acidic tea soil[J].Polish Journal of Environmental Studies,2020,29(1):323-330
参考文献 46
Malghani S,Gleixner G,Trumbore S E.Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions[J].Soil Biology & Biochemistry,2013,62:137-146
参考文献 47
Lan Z M,Chen C R,Rezaei R M,et al.High pyrolysis temperature biochars reduce nitrogen availability and nitrous oxide emissions from an acid soil[J].GCB Bioenergy,2018,10(12):930-945
参考文献 48
Case S D C,McNamara N P,Reay D S,et al.Can biochar reduce soil greenhouse gas emissions from a Miscanthus bioenergy crop?[J].GCB Bioenergy,2014,6(1):76-89
参考文献 49
Wu Z,Zhang X,Dong Y B,et al.Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system:six-year field observation and meta-analysis[J].Agricultural and Forest Meteorology,2019,278(15):107625
参考文献 50
He Y H,Zhou X H,Jiang L L,et al.Effects of biochar application on soil greenhouse gas fluxes:a meta-analysis[J].GCB Bioenergy,2016,9(4):743-755
参考文献 51
Song X Z,Pan G X,Zhang C,et al.Effects of biochar application on fluxes of three biogenic greenhouse gases:a meta-analysis[J].Ecosystem Health and Sustainability,2017,2(2):14
参考文献 52
Liu Q,Zhang Y H,Liu B J,et al.How does biochar influence soil N cycle?A meta-analysis[J].Plant and Soil,2018,426(1/2):211-225
参考文献 53
Spokas K A.Impact of biochar field aging on laboratory greenhouse gas production potentials[J].GCB Bioenergy,2013,5(2):165-176
参考文献 54
Lin Y X,Ding W X,Liu D Y,et al.Wheat straw-derived biochar amendment stimulated N2O emissions from rice paddy soils by regulating the amoA genes of ammonia-oxidizing bacteria[J].Soil Biology and Biochemistry,2017,113:89-98
参考文献 55
Hawthorne I,Johnson M S,Jassal R S,et al.Application of biochar and nitrogen influences fluxes of CO2,CH4 and N2O in a forest soil[J].Journal of Environmental Management 2017,192(1):203-214
参考文献 56
Escuer-Gatius J,Shanskiy M,Soosaar K,et al.High-temperature hay biochar application into soil increases N2O fluxes[J].Agronomy,2020,10(1):109
参考文献 57
Sun L Y,Li L,Chen Z Z,et al.Combined effects of nitrogen deposition and biochar application on emissions of N2O,CO2 and NH3 from agricultural and forest soils[J].Soil Science and Plant Nutrition,2014,60(2):254-265
参考文献 58
Mørkved P T,Dörsch P,Bakken L R.The N2O product ratio of nitrification and its dependence on long-term changes in soil pH[J].Soil Biology & Biochemistry,2007,39(8):2048-2057
参考文献 59
Horák J,Kotuš T,Toková L,et al.A sustainable approach for improving soil properties and reducing N2O emissions is possible through initial and repeated biochar application[J].Agronomy,2021,11(3):582
参考文献 60
Liu B B,Morkved P T,Frostegard A,et al.Denitrification gene pools,transcription and kinetics of NO,N2O and N2 production as affected by soil pH[J].FEMS Microbiol Ecol,2010,72(3):407-417
参考文献 61
van Zwieten L,Kimber S,Morris S,et al.Influence of biochars on flux of N2O and CO2 from Ferrosol[J].Australian Journal of Soil Research,2010,48(7):555-568
参考文献 62
Fan C H,Chen H,Li B,et al.Biochar reduces yield-scaled emissions of reactive nitrogen gases from vegetable soils across China[J].Biogeosciences,2017,14(11):2851-2863
参考文献 63
Cayuela M L,Sanchez-Monedero M A,Roig A,et al.Biochar and denitrification in soils:when,how much and why does biochar reduce N2O emissions?[J].Scientific Reports,2013,3:1732
参考文献 64
Yuan H J,Zhang Z J,Li M Y,et al.Biochar's role as an electron shuttle for mediating soil N2O emissions[J].Soil Biology and Biochemistry,2019,133:94-96
参考文献 65
Yuan D,Yuan H J,He X D,et al.Identification and verification of key functional groups of biochar influencing soil N2O emission[J].Biology and Fertility of Soils,2021,57(4):447-456
参考文献 66
Chen G H,Zhang Z R,Zhang Z Y,et al.Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures[J].Science of the Total Environment,2018,615(15):1547-1556
参考文献 67
Harter J,Krause H M,Schuettler S,et al.Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community[J].ISME Journal,2014,8(3):660-674
参考文献 68
Ji C,Li S Q,Geng Y J,et al.Differential responses of soil N2O to biochar depend on the predominant microbial pathway[J].Applied Soil Ecology,2020,145:103348
参考文献 69
Zhang L Y,Jing Y M,Chen C R,et al.Effects of biochar application on soil nitrogen transformation,microbial functional genes,enzyme activity,and plant nitrogen uptake:a meta-analysis of field studies[J].GCB Bioenergy,2021,13(12):1859-1873
参考文献 70
Cleemput O V.Subsoils:chemo-and biological denitrification,N2O and N2 emissions[J].Nutrient Cycling in Agroecosystems,1998,52(2/3):187-194
参考文献 71
Bremner J M,Blackmer A M,Waring S A.Formation of nitrous oxide and dinitrogen by chemical decomposition of hydroxylamine in soils[J].Soil Biology and Biochemistry,1980,12(3):263-269
参考文献 72
Rubasinghege G,Spak S N,Stanier C O,et al.Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate[J].Environmental Science Technology 2011,45(7):2691-2697
参考文献 73
Lin X R,Spokas K,Venterea R,et al.Assessing microbial contributions to N2O impacts following biochar additions[J].Agronomy,2014,4(4):478-496
参考文献 74
Cornelissen G,Rutherford D W,Arp H P,et al.Sorption of pure N2O to biochars and other organic and inorganic materials under anhydrous conditions[J].Environmental Science & Technology,2013,47(14):7704-7712
参考文献 75
Spokas K A,Koskinen W C,Baker J M,et al.Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil[J].Chemosphere,2009,77(4):574-581
参考文献 76
Yanai Y,Toyota K,Okazaki M.Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments[J].Soil Science and Plant Nutrition,2007,53(2):181-188
参考文献 77
Liu X Y,Qu J J,Li L Q,et al.Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies?A cross site field experiment from South China[J].Ecological Engineering,2012,42:168-173
参考文献 78
Quin P,Joseph S,Husson O,et al.Lowering N2O emissions from soils using eucalypt biochar:the importance of redox reactions[J].Scientific Reports,2015,5:16773
参考文献 79
He C H,Manevski K,Andersen M,et al.Abiotic mechanisms for biochar effects on soil N2O emission[J].International Agrophysics,2019,33(4):537-546
参考文献 80
Avdeev V I,Ruzankin S F,Zhidomirov G M J K,et al.Molecular mechanism of direct alkene oxidation with nitrous oxide:DFT analysis[J].Kinetics and Catalysis,2005,46(2):177-188
参考文献 81
Yu Z,Chen L,Pan S,et al.Feedstock determines biochar-induced soil priming effects by stimulating the activity of specific microorganisms[J].European Journal of Soil Science,2018,69(3):521-534
参考文献 82
Li S,Harris S,Anandhi A,et al.Predicting biochar properties and functions based on feedstock and pyrolysis temperature:a review and data syntheses[J].Journal of Cleaner Production,2019,215(0959-6526):890-902
参考文献 83
Keiluweit M,Nico P S,Johnson M G,et al.Dynamic molecular structure of plant biomass-derived black carbon(biochar)[J].Environmental Science & Technology,2010,44(4):1247-1253
参考文献 84
Bird M I,Wurster C M,Silva P HD P,et al.Algal biochar:production and properties[J].Bioresource Technology,2011,102(2):1886-1891
参考文献 85
Liao J Y,Hu A,Zhao Z W,et al.Biochar with large specific surface area recruits N2O-reducing microbes and mitigate N2O emission[J].Soil Biology and Biochemistry,2021,156:108212
参考文献 86
Shakoor A,Arif M S,Shahzad S M,et al.Does biochar accelerate the mitigation of greenhouse gaseous emissions from agricultural soil?A global meta-analysis[J].Environmental Research,2021,202:111789
参考文献 87
Duan P P,Zhang X,Zhang Q Q,et al.Field-aged biochar stimulated N2O production from greenhouse vegetable production soils by nitrification and denitrification[J].Science of the Total Environment,2018,642:1303-1310
参考文献 88
Wang L,Gao C C,Yang K,et al.Effects of biochar aging in the soil on its mechanical property and performance for soil CO2 and N2O emissions[J].Science of the Total Environment,2021,782(15):146824
参考文献 89
Wang L,Yang K,Gao C C,et al.Effect and mechanism of biochar on CO2 and N2O emissions under different nitrogen fertilization gradient from an acidic soil[J].Science of the Total Environment,2020,747:141265
参考文献 90
Stark J M,Firestone M K.Mechanisms for soil moisture effects on activity of nitrifying bacteria[J].Applied Environmental Microbiology,1995,61(1):218-221
目录contents

    摘要

    氧化亚氮(N2O)是一种会破坏平流层臭氧的长寿命温室气体,农业土壤是大气N2O人为排放源中的最大贡献者,因此减少农业土壤N2O排放十分迫切.生物质炭是生物质在低温限氧条件下热解产生的碳材料,具有丰富的孔隙结构.已有研究表明,生物质炭是减少土壤N2O排放的重要手段之一,但对其影响效应和机理的系统报道很少.本文论述了生物质炭对土壤中N2O排放的影响,重点从生物与非生物的角度讨论了生物质炭影响土壤N2O排放可能的机制.从生物角度来看,生物质炭的“石灰效应”会升高土壤pH、改变土壤中微生物过程从而促进N2O还原为N2,同时生物质炭也会作为“电子穿梭体”加快这一过程.另外,生物质炭还会增加含有nosZ基因的反硝化细菌数量,促进N2O的还原.而当土壤中N2O主要来自于硝化作用时,生物质炭增加土壤中氨氧化细菌amoA丰度,进而增加土壤N2O排放量.从非生物角度来看,生物质炭能吸附N2O降低土壤N2O释放量,随后其表面的C=C可能会与N2O发生加成反应进而消耗N2O.最后,本文归纳了生物质炭对土壤N2O的影响主要取决于生物质炭特性(原料、热解条件、C/N、施用量、老化程度)、氮肥施用量与土壤理化性质等,同时总结了当前利用生物质炭减少土壤N2O排放研究的不足之处,并对利用其减排土壤N2O的发展方向进行了展望.

    Abstract

    Nitrous oxide (N2O) is a long-lived greenhouse gas that can destroy stratospheric ozone.Agricultural soil is the largest contributor to anthropogenic N2O emissions.It is thus urgent to reduce N2O emissions from agricultural soil.Biochar is a carbon material produced by pyrolysis of biomass at low temperature and limited oxygen with rich pore structures.Biochar is one of the important means to reduce greenhouse N2O emissions,but there are few systematic reports on its effect and mechanism.We describe the effects of biochar on N2O emissions from soil.We then discuss the possible mechanisms of biochar on soil N2O emissions.From a biological point of view,the “liming effect” of biochar could increase soil pH and change soil microbial processes to promote the reduction of N2O to N2,and also act as an “electron shuttle” in this process.In addition,biochar could increase the population of denitrification bacteria containing nosZ gene to promote the reduction of N2O to N2.When soil N2O was mainly generated through nitrification,the addition of biochar could increase the abundance of ammonia-oxidizing bacteria harboring amoA gene in soil,which led to the increase of soil N2O emissions.From an abiotic point of view,the adsorption of N2O on the surface of biochar could reduce the release of N2O emission from soil,and then the surface C=C may react with N2O to consume it.The effects of biochar amendments on N2O emissions depend on the characteristics of biochar (raw materials,pyrolysis conditions,C/N ratio,application rate,and aging degree),nitrogen application rate,and soil physico-chemical properties.Finally,we summarize and put forward further prospect on biochar in reducing N2O emissions from soil.This review will provide an important technical reference for mitigation of N2O emissions from agricultural soil as well as agricultural carbon neutrality in the future.

  • 0 引言

  • 全球变暖是当今人类遇到最严重的生态环境问题之一.根据2021年政府间气候变化专门委员会(IPCC)第六次评估报告,2011年以来,大气中温室气体含量持续增加,CO2、CH4、N2O的年平均质量浓度分别为805.36mg·m-3、1 332.86 μg·m-3和652.14 μg·m-3[1].21世纪前20年(2001—2020年)全球平均温度比1850—1900年平均值高0.99℃,而2011—2020年间全球平均温度较1850—1900年平均值高1.09℃,人类活动排放的大气温室气体的增加是导致全球平均温度升高的主要原因.其中,N2O是一种长寿命温室气体,尽管在大气中含量只是CO2的1/1 000,但其增温潜势却是CO2的265倍[2].N2O在对流层中非常稳定,其大气寿命约为114年到131年之间[3-5],还会通过紫外光光解在平流层中造成臭氧的破坏[6].近几十年来,大气中N2O质量浓度几乎呈线性增长,据估计,工业化前的N2O水平约为530.36 μg·m-3,2016年的N2O水平为646.84 μg·m-3[7],比工业化前的水平高出22%.全球N2O浓度可能在未来几十年内持续上升,预计到2030年,农业土壤对N2O总排放量的贡献率将高达59%[8].大气中N2O有57%是自然来源,主要来自土壤和海洋,其余43%是人为来源,其中70%为农业源,包括施用化学氮肥和有机肥、生物燃料燃烧、人类排泄物等.农业源中主要以土壤N2O排放为主[9],这也是大气中N2O浓度升高的最主要人为因素.另外,包括化石燃料和工业(主要是尼龙和硝酸生产) 在内的直接人为源占排放总量的27%[10].土壤中N2O的排放与消除由一系列微生物过程所驱动,最主要的来源是由硝化作用、反硝化作用和异化硝酸盐还原为氨的过程等反应所生成[11],但能有效减少土壤N2O排放的生物技术却很少,具有nosZ基因的细菌可以将N2O还原为N2,是目前已知唯一的N2O消除途径[8].在全球范围内,农业土壤是公认的人为排放N2O的最大贡献者,因此减少农业土壤N2O排放至关重要.

  • 针对减少农业土壤N2O排放已经有很多研究报道,常见的技术方法有改进灌溉方式[12]、优化施肥用量及施肥方式、使用硝化抑制剂提高氮肥利用率[13-14]、接种微生物[15-16]和利用生物质炭[17-18]等.其中添加生物质炭是减少农田土壤N2O的重要措施之一,作为一种低氧热解产生的碱性碳材料[19],生物质炭具有大的比表面积、强吸附/吸收能力、低价环保、易与多种方法联合使用等优点,已在农业上广泛应用.例如,有学者通过荟萃分析发现土壤中生物质炭的添加会使得N2O排放量显著减少54%[17],但也有结果表明生物质炭对N2O的排放没有影响[20-23],甚至会增加N2O排放量[24-26].关于添加生物质炭减少农业土壤N2O的排放还需要进行深入研究,添加生物质炭对减少土壤N2O排放的效应、机理和关键影响因素尚不清楚.本文旨在综述添加生物质炭对农业土壤N2O排放的影响,明确可能的减排机制及影响因素,为未来研究农业土壤N2O减排提供理论依据和实际指导.

  • 1 生物质炭的基本特征及其应用

  • 生物质具有可再生性及低污染等特性,在环境修复中应用广泛.有些生物质(例如杂草、秸秆、粪便、树叶、麦秆、种子壳、城市垃圾等)在缺氧或无氧的条件下经过高温操作,使生物质这些有机材料通过热解生成一种富碳产物,即生物质炭[27](图1).

  • 早在19世纪,科学家们就在亚马逊流域展开了对生物质炭的研究[28],它是一种低成本生物吸附材料,具有丰富多孔的结构,例如Kim等[29]的研究发现在生物质炭中存在许多不同大小的孔,每个孔对于生物质炭材料的吸附性能都起着至关重要的作用.生物质炭是一种碱性材料,能够改变土壤pH值[30],且具有优异的导电性和表面丰富的官能团[31].生物质炭结构与特性通常与制备条件密切相关,热解温度的升高会形成稳定性高且具有芳香族碳结构的生物质炭,例如其孔隙率和表面积会随着温度的增加而显著升高[29].这会导致具有较小粒度分布的生物质炭颗粒比例不断增加,从而使之具有比表面积大、透气性良好等特性,可以为微生物生长提供良好的介质.

  • 近年来,生物质炭作为一种环境友好的碳质材料,在空气污染[32]、废水处理[33-35]、污染土壤的修复[36-37]、土壤碳汇和土壤地力提升[38]等方面的应用引起了越来越多的关注.生物质炭表面富含负电荷,这一大特征使其同其他碳材料相比与土壤中的重金属阳离子具有更高的亲和力,可以将重金属阳离子吸附在生物质炭表面以达到去除污染的目的[39-40].这也是生物质炭用于土壤重金属污染修复的重要机制,使生物质炭被广泛应用于土壤环境污染的治理.随着对生物质炭相关研究的不断深入,很多学者发现在土壤中施用生物质炭还可以减少温室气体排放[41-42].例如,在Zhang等[43]的研究中使用小麦秸秆生产的生物质炭改良水稻土,在田间试验中实现N2O排放减少了41.8%.然而,施加生物质炭对土壤N2O的减排作用不尽相同,因此需要对不同的生物质炭进行广泛深入的研究,明确其在减少农业土壤N2O排放中的效果.

  • 2 添加生物质炭对土壤N2O排放的影响

  • 2.1 添加生物质炭能够减少土壤N2O的排放

  • 生物质炭独特的性质使其应用在各个领域,向土壤中添加生物质炭减少N2O就是其中最为重要的应用之一.早在2005年,Rondon等[44]首次报道了利用生物质炭减少N2O排放,他们发现在哥伦比亚大草原极酸性、低肥力的氧化土中种植大豆和热带禾草并施加木质生物质炭后,土壤的N2O排放量分别减少了50%和80%.从那时起,添加生物质炭成为减排农业土壤N2O排放的重要技术手段,评估生物质炭处理土壤N2O排放的研究数量呈指数增长,不少学者也都证明了生物质炭具有减缓温室气体N2O排放的潜力.Wang等[45]向茶园土壤中添加了生物质炭,发现在试验前20d,添加生物质炭的处理土壤N2O相对于不添加的对照显著降低了51.1%.Case等[18]研究了施用生物质炭对芒果土壤N2O排放的影响,经4个月的室内模拟试验,添加阔叶木生物质炭减少了湿润土壤的N2O排放;在施加生物质炭后60h内,施用量为1%、2%、5%和10%生物质炭处理中,N2O累积排放量分别比无生物质炭对照降低了19%、19%、73%和98%.Malghani等[46]研究了在农林土壤中添加玉米生物质炭对土壤N2O排放的影响,结果发现施加生物质炭的土壤N2O排放量相较于对照土壤大大降低.Lan等[47]通过盆栽试验研究了添加高热解温度下产生的生物质炭对土壤N2O排放的影响,结果表明所有生物质炭处理在施加氮肥(75%~85%)与不施加氮肥(33%~45%)条件下均显著减少了N2O排放量.Wu等[30]的研究结果表明,在碱性农田土壤中施加生物质炭2年以上和只施加新鲜生物质炭的处理N2O排放量分别降低了36.5%和14.1%.添加生物质炭减少土壤N2O排放的相关研究大多是短期室内模拟试验,长期减排潜力的相关研究相对较少.Case等[48]进行了长达2年的田间原位试验以明确生物质炭能否减少农业土壤N2O的排放,结果显示,添加生物质炭可以使N2O在2年内减少37%.Wu等[49]进行了为期6年的长期定位试验,对我国东南部稻麦轮作系统施用生物质炭 (0、20和40t·hm-2)的N2O排放情况进行了监测,结果表明,相较于不添加生物质炭的对照处理,添加生物质炭使土壤N2O排放量显著减少了19.5%~26.3%,这一结果明确了生物质炭在较长时间尺度上减少土壤N2O排放的效应.

  • 图1 生物质炭的来源、特点及应用

  • Fig.1 Source,characteristics and application of biochar

  • 除了大量室内模拟或田间原位试验以外,不少学者还对文献进行了统计综合分析,例如Cayuela等[17]对2007—2013年间发表的30项研究中261个试验处理进行了分析,结果表明,在实验室和田间原位条件下,生物质炭的施加使得土壤N2O排放降低了54%.He等[50]对91篇已发表的论文进行了荟萃分析,得出施用生物质炭使得土壤N2O排放通量降低了30.92%.Song等[51]对61项研究中的296项相关试验进行了荟萃分析,结果显示在实验室条件下添加生物质炭使土壤N2O减少了15%,在田间原位条件下可以减少19%,平均减少了16%.Liu等[52]的荟萃分析结果表明,添加生物质炭后土壤N2O排放量显著降低了32%.从上述结果可以看出,添加生物质炭可以明显减少农业土壤N2O的排放.

  • 2.2 添加生物质炭对土壤N2O的排放没有影响

  • 少数研究结果发现向土壤中添加生物质炭对N2O的排放没有影响.Spokas等[53]研究表明田间老化生物质炭相对于不添加的对照并不能显著减少或增加N2O的排放.Suddick等[21]的研究发现,向农业土壤添加高温核桃壳生物质炭相对于对照处理,无论是在7d内还是在1年内N2O排放量均没有显著性影响.Buchkina等[23]研究了向耕地土壤中添加生物质炭对N2O排放的影响,在整个试验期间,施用快速高温热解的生物质炭对土壤N2O排放并没有减排效果.这可能是由于所研究土壤中植物有效氮水平较低,从而弱化了生物质炭对土壤N2O排放的影响.

  • 2.3 添加生物质炭能够增加土壤N2O的排放

  • 随着对生物质炭相关研究的不断深入,一些研究结果显示在土壤中添加生物质炭不仅不会减少,反而会增加土壤N2O的排放.Clough等[26]在牧场土壤中施加松木生物质炭,检测其对施用牛尿后土壤N2O的排放,在这项基于实验室的研究中,添加生物质炭处理的N2O通量相对于不添加的对照并没有明显降低,并且在一段时间内刺激了N2O的排放.Lin等[54]研究了生物质炭对水稻土N2O排放的影响,经过45d的室内模拟试验发现添加4%生物质炭的处理显著增加了未施肥与施肥土壤的N2O排放量,分别增加了291%和256%;此外,添加1%生物质炭的处理在施用氮肥的情况下显著增加了土壤N2O的排放量.Hawthorne等[55]的研究表明,在不施加尿素的情况下,添加1%生物质炭的处理土壤N2O排放量相对于不添加的对照无显著差异,而添加10%生物质炭的处理土壤N2O排放量增加了191%.虽然Wu等[30]的研究发现向碱性土壤中添加生物质炭可以减少N2O的排放量,但在酸性土壤中情况有所不同,添加新鲜生物质炭处理比对照处理N2O排放增加了150.1%.Verhoeven等[25]向加利福尼亚州中北部的一个商业酿酒葡萄园土壤中添加5%的生物质炭,结果表明,松木生物质炭处理每年的N2O累积排放量均显著高于不添加的对照处理,核桃生物质炭处理每年的N2O排放量虽然相较于对照差异不显著,但也高于对照.Escuer-Gatius等[56]通过室内盆栽试验研究了添加干草生物质炭对施用有机肥土壤的N2O减排效果,添加生物质炭的处理相对于不添加的对照并没有减少土壤N2O排放量,但随着生物质炭的添加,产生了更高的N2O生成量,其累积排放量显著高于不添加的对照土壤.Buchkina等[23]向土壤表层添加生物质炭,发现高温(900℃)工艺制作的生物质炭显著增加了N2O的排放.因此,不能笼统地认为添加生物质炭可以减少农业土壤N2O,需要深入认识利用生物质炭减少土壤N2O排放的机理,明确其起作用的先决条件和决定其减排效应的关键环境因子.

  • 目前已有大量研究结果显示利用生物质炭能够减排农业土壤N2O,说明该技术具有可行性,但不同生物质炭会因为本身性质的不同或土壤的空间变异性等表现出不同的影响效应.例如,生物质炭原材料的差异会使其孔隙率或比表面积发生改变,这会影响周围土壤的微生物群落,而土壤N2O排放情况也会随之而产生差异,而土壤性质[23]也会影响生物质炭减排土壤N2O的效应,因此克服生物质炭空间差异以减少土壤的N2O排放是十分困难的,并且具有高度的不确定性.为了制定更有效的缓解策略来抵消N2O的增加,有必要更好地了解导致土壤N2O形成的潜在机制,探索利用生物质炭减排土壤N2O可能的机制有助于调控土壤N2O的排放.

  • 添加生物质炭对土壤N2O排放的影响如表1所示。

  • 3 生物质炭影响土壤N2O排放的机制

  • 生物质炭的加入对土壤中N2O的影响途径有很多种,具有复杂性与时空变异性,这可能是生物过程和非生物过程相互作用的结果,因此,本文将从生物与非生物机制这两个方面论述添加生物质炭减少土壤N2O排放的潜在机制.

  • 3.1 生物机制

  • 土壤中N2O由硝化作用、反硝化作用和异化硝酸盐还原为氨的过程等一系列微生物驱动的反应所生成[11],以硝化作用和反硝化作用为主,生物质炭的施入会影响这些微生物过程,从而影响土壤N2O的排放.

  • 表1 添加生物质炭对农业土壤N2O排放的影响

  • Table1 Generalized overview of the effect of biochar on soil N2O emission

  • 生物质炭是一种碱性材料,可以通过“石灰效应”缓解土壤的酸度[22].有学者已经证明“石灰效应”对土壤N2O排放的作用[58]:向农业土壤施加石灰会提高土壤pH[59],使得硝化作用 (N2O/(NO-2+NO-3))的N2O产生率降低;而在基于反硝化作用减少土壤中N2O排放的主要途径中[11],土壤pH的升高会促进N2O还原为N2,(N2O/(N2+N2O)) 会因此而降低[60].van Zwieten等[61]已经将观察到的N2O排放量的减少与生物质炭诱导的土壤pH升高联系起来,因为N2O与N2的质量比随着pH值的升高而降低,表明添加生物质炭可以通过改变土壤性质来影响微生物硝化、反硝化作用,进而调控土壤N2O排放量.另外,生物质炭的多孔结构和大比表面积会改善土壤厌氧环境,增加土壤通气可以抑制反硝化途径中的N2O排放[62].

  • 不同来源的生物质炭对土壤N2O排放的影响程度和具体调控机制尚不清楚,但学者们通过大量研究揭示了一些可能的生物机制.早期Cayuela等[63]基于15N稳定同位素技术提出了生物质炭可以作为一种“电子穿梭体”,促进电子向土壤中的反硝化微生物转移,即促进了反硝化的最后一步,外加生物质炭本身产生的石灰效应,这会使N2O还原为N2以减少N2O的排放.虽然到目前为止,生物质炭是否可以作为土壤中的电子穿梭体来调控N2O的排放尚不清楚,但学者们做了许多相关试验进行探究.Yuan等[64]使用过氧化氢预处理来削弱生物质炭作为电子穿梭的功能,研究添加不同电子穿梭能力(接受和提供电子的能力)的生物质炭减少土壤N2O排放的效果,证实了生物质炭作为电子穿梭体在降低土壤N2O排放和N2O/(N2O+N2)(质量比)的重要作用.添加具有较强电子穿梭功能的生物质炭能够促进微生物还原N2O减少排放,但随着时间的推移,生物质炭会发生老化现象,且在老化的过程中生物质炭表面官能团的氧化使其可能丧失其石灰效应.最近Yuan等[65]发现C=O(羧基和羰基官能团)的丰度与土壤N2O排放量和N2O/(N2O+N2)排放比呈显著正相关,且这两个指标也会随生物质炭氧化程度的增加而增加,其中表面生成的羧基官能团会对生物质炭减少土壤N2O排放的潜力产生负面影响.土壤N2O排放量会随着生物质炭表面含氧官能团丰度的增加而增加[64],这一发现为生物质炭老化后可能会增加土壤N2O排放的效应提供了合理的解释.

  • Chen等[66]发现添加生物质炭显著增加了反硝化细菌群落的丰度,较低热解温度生成的生物质炭具有的酚类官能团可以作为电子供体参与反硝化的电子传递,同时也显著增加了硝酸盐还原菌的数量、促进了N2O还原为N2,而高温热解条件下生成的生物质炭中具有的醌类官能团作为电子汇减少了总氮的反硝化,同时增加了含有nosZ基因的反硝化细菌、促进了N2O还原为N2,且所有生物质炭处理的N2O累积排放量和N2O/(N2O+N2)比值都显著降低.这表明添加生物质炭能够通过加强反硝化作用最后一步将N2O还原为N2来减少N2O的排放.Harter等[67]观察到的含有nosZ的微生物丰度和基因表达水平会随着生物质炭的添加而增加,这会促进微生物直接将N2O还原为N2,从而减少土壤N2O的净排放,这一现象也为Cayuela等[63]结果中N2O/(N2O+N2)比值下降提供了证据.在Wu等[49]长达6年的田间原位试验中,生物质炭和氮肥处理显著提高了nosZ的丰度,同时降低了nirSnirK的丰度,这说明生物质炭不仅对N2O产生过程具有抑制作用,还可以促进N2O进一步还原为N2.这一结果为利用生物质炭减少土壤N2O排放提供了直接证据.

  • 也有学者对生物质炭增加土壤N2O排放这一现象提出了一些可能机制.Ji等[68]发现添加生物质炭会提高氨氧化细菌amoA的丰度, 氨氧化细菌在硝化过程中会驱动硝化速率加快,从而诱导土壤N2O的排放增加.生物质炭减少N2O排放的有效性与其在土壤中主要的N2O产生途径有关,当硝化作用对N2O产生的相对贡献远大于反硝化作用时,添加生物质炭后氨氧化细菌数量的增加可能会对土壤N2O排放产生促进作用.反之,当反硝化作用是N2O生成的主要途径时,N2O排放净通量取决于NO3-还原为N2O和N2O还原为N2的过程之间的平衡.Lin等[54]和Zhang等[69]的研究也发现添加生物质炭会提高氨氧化细菌amoA的丰度.

  • 总的来说,生物质炭具有石灰效应且拥有多孔结构和大比表面积,这会减少土壤N2O的排放,添加到土壤中的生物质炭会抑制N2O的产生过程,作为电子穿梭体促进N2O还原为N2以达到减少土壤N2O排放的目的,但当土壤N2O生成途径发生改变时也会增加其排放量.如何调控生物质炭的加入减少土壤N2O的排放,还需要深入地探索生物质炭与N2O产生和还原微生物的相互作用.

  • 3.2 非生物机制

  • 尽管生物机制和过程可能在调节土壤N2O排放中发挥关键作用,但非生物过程也可能对其产生影响.土壤中的N2O生成与消耗过程中的非生物过程比较少,除了微生物过程以外的一些非生物调节机制所产生的N2O作用主要来自于化学反硝化[70].化学反硝化是指通过任何非生物化学反应所形成NO、N2O、N2的过程(图2),包括:①NH2OH与亚硝酸盐(NH2OH+HNO2 →N2O+2H2O)反应产生N2O[71];②亚硝酸盐(NO2-)的化学分解[70];③硝酸铵在反应表面潮湿且具有光照的条件下分解生成N2O[72].在这些过程中,生物质炭作为“催化剂”的作用不容小觑.许多学者通过研究证明生物质炭减缓土壤N2O排放过程中存在非生物机制.Lin等[73]进行了室内培养试验研究微生物对添加生物质炭土壤N2O排放的贡献,结果发现,相较于生物质炭处理,微生物处理的N2O生成量没有显著差异,所以无法将产生的N2O的原因完全归咎于特定的微生物群(例如真菌或细菌).这也表明在添加生物质炭的土壤中存在非生物过程产生或消耗N2O的途径.因此,研究生物质炭影响土壤N2O排放的非生物机制,对于进一步了解影响N2O产生和消耗的过程具有重要意义.

  • 图2 化学反硝化过程可能发生的反应

  • Fig.2 Possible reactions in the process of chemical denitrification

  • 生物质炭表面含有丰富的官能团[31],这些官能团不仅可以通过影响微生物电子得失调节N2O的排放,还可能通过吸附或后续化学反应(非生物反应)来影响N2O的排放.土壤中N2O生成和消耗的非生物反应相关研究较少,但生物质炭在其中发挥的作用值得深入探究.有学者推测生物质炭减少土壤N2O排放的一个可能的机制是生物质炭对N2O的吸附.例如Cornelissen等[74]在含纯N2O的无水体系中,首次测量了生物质炭对N2O的吸附量变化,并将这些结果与生物质炭抑制N2O排放的结果进行了比较,结果发现生物质炭上N2O的最大吸附量在20℃时为50 000~130 000 μg·g-1,而以往的文献中生物质炭对N2O的吸附量在0.5~960 μg·g-1[18,75-77]时可显著减少土壤N2O的排放,从而得出生物质炭吸附N2O是减少N2O排放的一种可能的机制.Quin等[78]研究了在三种水分状态下不同生物质炭含量对N2O的减排作用以及可能的非生物反应,其中5%的处理中N2O下降明显,在该处理中N—C、H—N、—O—C=N基团有较大的增加,这说明N2O可能已经被吸附.He等[79]也进行了类似的研究,发现5%的处理减少N2O排放的效果最好,元素分析结果发现该处理生物质炭表面的氮含量从1.11%增加到1.50%,而在100%生物质炭处理下,炭表面的氮含量也从1.11%增加到1.46%,这为生物质炭吸附N2O提供了依据.此外,吸附在生物质炭上的N2O会与生物质炭的有机分子或生物质炭表面的土壤有机化合物发生后续氧化还原反应.例如,Avdeev等[80]在通过计算得出N2O可以与C=C发生环加成反应,使氧原子转移到C=C上,该过程中间体分解会产生酮并向气相中释放出N2,具体反应如下:

  • Quin等[78]也发现C=O在5%生物质炭添加的处理中显著增加;同样地,He等[79]的结果也显示C=O增加,表明该加成反应可能已经发生.虽然N2O可以与C=C发生反应而消耗,但氧化后生物质炭表面增加的C=O基团将与N2O作为电子受体竞争电子,从而再次抑制土壤中N2O的还原过程,这其中的先后顺序以及机制都需要进一步研究.

  • 尽管许多学者从生物与非生物角度研究了利用生物质炭减少土壤N2O的排放以及可能的机制,但得到的结果都相对单一、系统性不够强,生物质炭影响土壤N2O排放的具体机制还没有明确的定论,相关的生物或非生物机制仍需进一步探究.在研究机制的同时,不同的生物质炭、不同的土壤类型等关键因素会对生物质炭在实际应用中的减排效应产生影响,因此明确影响生物质炭减少土壤N2O排放的关键因素也十分重要.

  • 4 生物质炭影响农业土壤N2O排放的关键因素

  • 4.1 生物质炭性质

  • 4.1.1 原料与热解条件

  • Yu等[81]发现不同的原料或不同的热解条件下制备的生物质炭的性质通常不同,而生物质炭的性质差异会对土壤中N2O的排放产生影响.Li等[82]的研究结果表明,与动物粪便和生物固体产生的生物质炭相比,木质和草本生物质炭显示出更好的减少N2O排放的效应.Cayuela等[17]的荟萃分析中,也发现木材和草本生物质炭施入土壤后N2O排放量会显著减少.在热解温度方面,Li等[82]发现施用高温生物质炭(>600℃)在降低N2O排放方面更为有效.Keiluweit等[83]和Bird等[84]的研究结果表明随着温度的增加,生物质炭孔隙率和表面积随之显著升高,而比表面积对生物质炭所产生的的效应也具有一定的影响,生物质炭孔隙多且大的特征有利于微生物的生长.Liao等[85]的研究结果表明,比表面积大的生物质炭可招募更多的N2O还原细菌以减少土壤N2O的排放.不同的热解温度对生物质炭表面的官能团也有很大的影响.例如,Yuan等[65]发现在600~800℃下生成的生物质炭具有相对较低的羧基官能团,有利于减少土壤N2O排放,在<400℃下产生的生物质炭含有相对较高的羧基,这会通过与N2O还原微生物竞争电子,抑制N2O的还原过程,从而增加土壤N2O的排放.

  • 4.1.2 碳氮比

  • 生物质炭的C/N(碳氮比)在减少土壤N2O排放中起着决定性的作用.Cayuela等[17]的研究结果表明生物质炭的C/N高于30时,土壤N2O排放会显著减少.Rittl等[22]向土壤添加9种不同的生物质炭,结果发现相对于高C/N的生物质炭,添加低C/N的生物质炭会增加土壤N2O的排放,而高温热解生成的生物质炭具有更高的C/N,这与前文提到的高热解温度下所产生的生物质炭更能减少土壤N2O排放的观点相一致.

  • 4.1.3 添加量

  • 生物质炭的添加量是减少土壤N2O排放的重要影响因素.Case等[18]发现添加1%、2%、5%和10%的生物质炭处理中,60h内土壤的N2O累积排放量分别比无生物质炭的对照低19%、19%、73%和98%,表明N2O累积排放量随着生物质炭添加量的增加而减少.Shakoor等[86]的荟萃分析结果表明,≤30t·ha-1的生物质炭添加量是保持作物较高产量和减少土壤N2O排放的最适宜用量.

  • 4.1.4 老化程度

  • 生物质炭在土壤中会随着时间的推移而逐渐老化,生物质炭老化对土壤N2O排放的影响较为复杂.老化过程会使生物质炭表面官能团发生氧化.Yuan等[64]的研究结果表明含氧官能团会促进土壤N2O的排放.Duan等[87]发现老化生物质炭显著促进了土壤的硝化和反硝化作用,N2O排放量增加了43~78%.Wang等[88]研究发现老化后的生物质炭表面具有丰富的微生物群落结构,其中包括促进或减少N2O排放的微生物群落,但生物质炭老化对微生物群落结构和基因丰度的影响及其与土壤N2O排放的关系还有待于进一步研究.

  • 4.2 氮肥施用量

  • 氮肥的施用量也会对生物质炭改善土壤N2O排放产生影响.Sun等[57]研究结果表明,施氮量分别为0、60和120kg·hm-2·a-1时,生物质炭改良剂对农田土壤N2O减排效果随着施氮量的增加而增强,N2O累积排放量分别减少了18.4%、17.3%和22.9%.Lan等[47]发现生物质炭对施用氮肥处理的土壤N2O减少幅度(75%~85%)高于不施用氮肥的处理(33%~45%).Wang等[89]发现氮肥施用量越高,生物质炭对反硝化过程的抑制作用越明显,能够显著减少土壤N2O的排放.

  • 4.3 土壤理化性质

  • 4.3.1 土壤水分含量

  • 土壤水分条件会影响生物质炭减少土壤N2O排放的效果.Stark等[90]认为扩散路径长度会因为含水率低而变得曲折,生物质炭的加入使气体流动路径更加曲折,提供了更多的吸附点从而减少了N2O的释放,而高含水率时扩散路径曲折性降低,土壤N2O排放量则会明显增加.He等[79]也证明了随着土壤孔隙含水量(WFPS)的增加,N2O排放量会显著增加.该结果为Stark等[90]的猜想提供了证据,因此含水率的不同会使生物质炭对土壤N2O排放的影响产生差异.Yanai等[76]发现土壤含水率接近饱和时生物质炭处理土壤N2O排放量越高,而含水率较小时生物质炭处理的N2O排放量则减少.

  • 4.3.2 土壤质地

  • 相同的生物质炭施用于不同土壤时对N2O排放会具有不同的影响.Shakoor等[86]的荟萃分析结果表明,在不同土壤类型上,生物质炭在较细土壤(黏土、粉黏土、砂黏土)或中等土壤(壤土、黏壤土、粉土、粉黏壤土、粉壤土)的N2O释放量最高,而在粗糙土壤(砂黏壤土、砂壤土、壤砂土)中施用生物质炭则显著减少了N2O的排放.Cayuela等[63]的研究表明在质地较细的土壤中添加生物质炭降低了N2O/(N2+N2O).土壤质地的影响主要取决于土壤的湿度,Cayuela等[17]的荟萃分析结果表示低湿度条件下(WFPS<80%)生物质炭会减少粗糙土壤N2O的排放,而高湿度条件下(WFPS>80%),生物质炭更倾向减少质地细腻土壤的N2O排放.

  • 5 结论与展望

  • 本文主要综述了基于添加生物质炭的农业土壤N2O减排研究进展.向土壤中添加生物质炭可以减少N2O的排放,但也存在没有减排效应甚至增加N2O排放的情况.利用生物质炭减少N2O排放的机制包括生物机制(侧重微生物机制)和非生物机制两方面.生物质炭可以调控土壤中的微生物过程包括硝化反硝化作用进而影响N2O的排放,还能够提高土壤pH减少N2O的产生或增强N2O还原为N2;巨大比表面积的特点也使生物质炭招募更多含有nosZ基因的微生物、促进N2O还原为N2来降低N2O的排放;生物质炭作为一种“电子穿梭体”可加快N2O的还原.另外,生物质炭本身还会吸附N2O并与其表面的C=C发生加成反应以达到消耗N2O的目的.而在有些土壤中(更多是酸性土壤)生物质炭会提高氨氧化细菌amoA基因的丰度、促进硝化作用产生N2O.生物质炭自身的性质、氮肥施用量和土壤理化性质是影响其对N2O减排效果的关键因素.

  • 尽管利用生物质炭减少农业土壤N2O的排放取得了较大的进展,但是还存在很多问题与难点.首先,生物质炭在土壤中会逐渐老化,由于长期的物理、化学和生物作用影响,它的表面官能团会在老化过程中不断被氧化,其表面氧化官能团的丰度会增加(如羧基官能团)[64-65],这会使生物质炭与微生物竞争电子从而抑制N2O还原为N2,对土壤N2O排放的缓解潜力减弱,甚至从抑制土壤N2O排放转变为促进土壤N2O排放.制备羧基丰度较低的生物质炭,并评价其对土壤N2O排放的影响,避免或抵消这种氧化所带来的负效应,将成为未来的一个研究重点.随着处理时间的延长,生物质炭的吸附量也会有所下降[74],这可能会带来潜在的生态风险,未来应考虑长期施用生物质炭引起的饱和效应.其次,已有的研究中基于田间原位试验较少,获得的结果也非常有限,在室内模拟条件下的发现和机制可能与田间原位条件下有所不同,不能简单类推到野外田间条件下[69].因此,有必要进行更广泛的田间原位试验,研究施用生物质炭对农田土壤N2O的影响和长期效应,揭示减少N2O排放的机制.再次,由于缺乏长期系统的研究结果,利用生物质炭减少N2O排放的关键影响因素知之甚少,因此迫切需要进行系统深入的研究,明确原料、热解条件、产品特性、土壤特性、作物类型、灌溉率、田间管理条件等更多、更详细的信息[86],在农田土壤中应用生物质炭来减缓温室气体排放之前,充分考虑这些重要因素,为进一步研究生物质炭减排土壤N2O机制的研究提供更多的可能;同时,进一步明确添加生物质炭引起的土壤微生物群落的变化,尝试从微生物角度深入细致研究利用生物质炭减排土壤N2O的生物机制[85],例如明确生物质炭可以在土壤中招募的微生物群落类型,分离筛选含有nosZ基因的菌群,从实验室纯培养角度出发以探究两者之间的相互作用,延伸至转录组或功能基因转录本的量化,探明其中机制;此外,这些结果是基于在没有种植植物的微宇宙中进行的短期培养,今后应当考虑田间条件下可能的植物-土壤-生物炭相互作用[85].最后,可以利用生物质炭作为载体,将分离筛选的N2O还原细菌定殖于生物质炭表面,合成新型微生物生物质炭材料,运用于田间尺度或区域尺度测试其对N2O减排的贡献,这也为土壤N2O的减排提供了一个新思路.总而言之,在土壤中添加生物质炭减排土壤N2O是一种低成本、高效益、切实可行的方法,可为我国实现农业碳中和战略目标提供重要技术参考.

  • 参考文献

    • [1] IPCC.Summary for policymakers[R]//Climate Change 2021:the Physical Science Basis.Cambridge,UK,and New York,USA:Cambridge University Press,2021

    • [2] Flato G,Marotzke J,Abiodun B,et al.Evaluation of climate models[R]//IPCC.Climate Change 2013:the Physical Science Basis.Cambridge,UK,and New York,USA:Cambridge University Press,2013

    • [3] Prather M J,Holmes C D,Hsu J.Reactive greenhouse gas scenarios:systematic exploration of uncertainties and the role of atmospheric chemistry[J].Geophysical Research Letters,2012,39(9):L09803

    • [4] Minschwaner K,Salawitch R J,McElroy M B.Absorption of solar radiation by O2:implications for O3 and lifetimes of N2O,CFCl3,and CF2Cl2[J].Journal of Geophysical Research:Atmospheres,1993,98(D6):10543-10561

    • [5] Volk C M,Elkins J W,Fahey D W,et al.Evaluation of source gas lifetimes from stratospheric observations[J].Journal of Geophysical Research:Atmospheres,1997,102(D21):25543-25564

    • [6] Kaiser J,Röckmann T,Brenninkmeijer C A M.Wavelength dependence of isotope fractionation in N2O photolysis[J].Physical Chemistry Chemical Physics,2002,4(18):4420-4430

    • [7] Prinn R G,Weiss R F,Arduini J,et al.History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment(AGAGE)[J].Earth System Science Data,2018,10(2):985-1018

    • [8] Hu H W,Chen D L,He J Z,et al.Microbial regulation of terrestrial nitrous oxide formation:understanding the biological pathways for prediction of emission rates[J].FEMS Microbiology Reviews,2015,39(5):729-749

    • [9] Kroezeab A C.The global nitrous oxide budget revisited[J].Greenhouse Gas Measurement and Management,2011,1(1):17-26

    • [10] Tian H Q,Xu R T,Canadell J G,et al.A comprehensive quantification of global nitrous oxide sources and sinks[J].Nature,2020,586(7828):248-256

    • [11] Baggs E M.Soil microbial sources of nitrous oxide:recent advances in knowledge,emerging challenges and future direction[J].Current Opinion in Environmental Sustainability,2011,3(5):321-327

    • [12] Kallenbach C,Rolston D,Horwath W.Cover cropping affects soil N2O and CO2 emissions differently depending on type of irrigation[J].Ecosystems & Environment,2010,137(3/4):251-260

    • [13] Wang S W,Shan J,Xia Y Q,et al.Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification:a field experiment over two consecutive rice-growing seasons[J].Science of the Total Environment,2017,593/594:347-356

    • [14] Wu D,Senbayram M,Well R,et al.Nitrification inhibitors mitigate N2O emissions more effectively under straw-induced conditions favoring denitrification[J].Soil Biology and Biochemistry,2017,104:197-207

    • [15] Nishizawa T,Quan A H,Kai A,et al.Inoculation with N2-generating denitrifier strains mitigates N2O emission from agricultural soil fertilized with poultry manure[J].Biology & Fertility of Soils,2014,50(6):1001-1007

    • [16] Domeignoz-Horta L A,Putz M,Spor A,et al.Non-denitrifying nitrous oxide-reducing bacteria:an effective N2O sink in soil[J].Soil Biology & Biochemistry,2016,103:376-379

    • [17] Cayuela M L,van Zwieten L,Singh B P,et al.Biochar's role in mitigating soil nitrous oxide emissions:a review and meta-analysis[J].Agriculture,Ecosystems & Environment,2014,191(15):5-16

    • [18] Case S D C,McNamara N P,Reay D S,et al.The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil:the role of soil aeration[J].Soil Biology & Biochemistry,2012,51:125-134

    • [19] Shaaban M,Van Zwieten L,Bashir S,et al.A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution[J].Journal of Environmental Management,2018,228(15):429-440

    • [20] Scheer C,Grace P R,Rowlings D W,et al.Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales,Australia[J].Plant and Soil,2011,345(1/2):47-58

    • [21] Suddick E C,Six J.An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation[J].Science of the Total Environment,2013,465:298-307

    • [22] Rittl T F,Butterbach-Bahl K,Basile C M,et al.Greenhouse gas emissions from soil amended with agricultural residue biochars:effects of feedstock type,production temperature and soil moisture[J].Biomass Bioenergy,2018,117:1-9

    • [23] Buchkina N P,Hüppi R,Leifeld J.Biochar and short-term N2O and CO2 emission from plant residue-amended soil with different fertilisation history[J].Zemdirbyste-Agriculture,2019,106(2):99-106

    • [24] Van Z L,Singh B,Joseph S,et al.Biochar and emission of non-CO2 greenhouse gases from soil[M]//Biochar for Environmental Management:Science and Technology.London,UK:Earthscan,2009:227-249

    • [25] Verhoeven E,Six J.Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard:an assessment across two years[J].Agriculture,Ecosystems and Environment,2014,191(15):27-38.DOI:10.1016/j.agee.2014.03.008

    • [26] Clough T J,Bertram J E,Ray J L,et al.Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil[J].Soil Science Society of America Journal,2010,74(3):852-860

    • [27] Lehmann J,Joseph S.Biochar for environmental management:an introduction[M]//Biochar for Environmental Management:Science and Technology.London,UK:Earthscan,2009:1-11

    • [28] Sombroek W G.Amazon soils:a reconnaissance of the soils of the Brazilian Amazon region[J].Revista Geográfica,1967,133(4):550

    • [29] Kim K H,Kim J Y,Cho T S,et al.Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine(Pinus rigida)[J].Bioresource Technology,2012,118:158-162

    • [30] Wu Z,Zhang Q Q,Zhang X,et al.Biochar-enriched soil mitigated N2O and NO emissions similarly as fresh biochar for wheat production[J].Science of the Total Environment,2020,701:134943

    • [31] Godlewska P,Schmidt H P,Yong S O,et al.Biochar for composting improvement and contaminants reduction:a review[J].Bioresource Technology,2017,246:193-202

    • [32] Zhang X Y,Gao B,Fang J E,et al.Chemically activated hydrochar as an effective adsorbent for volatile organic compounds(VOCs)[J].Chemosphere,2019,218:680-686

    • [33] Yin G C,Song X W,Tao L,et al.Novel Fe-Mn binary oxide-biochar as an adsorbent for removing Cr(Ⅲ)from aqueous solutions[J].Journal of Geophysical Research:Atmospheres,2020,389:124465

    • [34] Fang Z,Gao Y R,Bolan N,et al.Conversion of biological solid waste to graphene-containing biochar for water remediation:a critical review[J].Chemical Engineering Journal,2020,390:124611

    • [35] Lu L,Yu W T,Wang Y F,et al.Application of biochar-based materials in environmental remediation:from multi-level structures to specific devices[J].Biochar,2020,2:1-13

    • [36] Chen H B,Xing Y,Wang H L,et al.Animal carcass-and wood-derived biochars improved nutrient bioavailability,enzyme activity,and plant growth in metal-phthalic acid ester co-contaminated soils:a trial for reclamation and improvement of degraded soils[J].Journal of Environmental Management,2020,261(3):110246

    • [37] Bandara T,Franks A,Xu J M,et al.Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils[J].Critical Reviews in Environmental Science and Technology,2019,50(4):903-978

    • [38] Wu P,Ata-Ul-Karim S T,Singh B P,et al.A scientometric review of biochar research in the past 20 years(1998-2018)[J].Biochar,2019,27(1):23-43

    • [39] Cao X D,Ma L N,Gao B,et al.Dairy-manure derived biochar effectively sorbs lead and atrazine[J].Environmental Science & Technology,2009,43(9):3285-3291

    • [40] Jiang T Y,Jiang J,Xu R K,et al.Adsorption of Pb(Ⅱ)on variable charge soils amended with rice-straw derived biochar[J].Chemosphere,2012,89(3):249-256

    • [41] Li Y F,Hu S D,Chen J H,et al.Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions:a review[J].Plant and Soil,2018,18(2):546-563

    • [42] Fungo B,Lehmann J,Kalbitz K,et al.Ammonia and nitrous oxide emissions from a field Ultisol amended with tithonia green manure,urea,and biochar[J].Biology and Fertility of Soils,2019,55(2):135-148

    • [43] Zhang A F,Liu Y M,Pan G X,et al.Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain[J].Plant and Soil,2012,351(1/2):263-275

    • [44] Rondon M A,Ramirez J A,Lehmann J.Greenhouse gas emissions decrease with charcoal additions to tropical soils[C]//Proceedings of the 3rd USDA Symposium on Greenhouse Gases & Carbon Sequestration in Agriculture and Forestry,2005:21-24

    • [45] Wang H,Yi H T,Zhang X,et al.Biochar mitigates greenhouse gas emissions from an acidic tea soil[J].Polish Journal of Environmental Studies,2020,29(1):323-330

    • [46] Malghani S,Gleixner G,Trumbore S E.Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions[J].Soil Biology & Biochemistry,2013,62:137-146

    • [47] Lan Z M,Chen C R,Rezaei R M,et al.High pyrolysis temperature biochars reduce nitrogen availability and nitrous oxide emissions from an acid soil[J].GCB Bioenergy,2018,10(12):930-945

    • [48] Case S D C,McNamara N P,Reay D S,et al.Can biochar reduce soil greenhouse gas emissions from a Miscanthus bioenergy crop?[J].GCB Bioenergy,2014,6(1):76-89

    • [49] Wu Z,Zhang X,Dong Y B,et al.Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system:six-year field observation and meta-analysis[J].Agricultural and Forest Meteorology,2019,278(15):107625

    • [50] He Y H,Zhou X H,Jiang L L,et al.Effects of biochar application on soil greenhouse gas fluxes:a meta-analysis[J].GCB Bioenergy,2016,9(4):743-755

    • [51] Song X Z,Pan G X,Zhang C,et al.Effects of biochar application on fluxes of three biogenic greenhouse gases:a meta-analysis[J].Ecosystem Health and Sustainability,2017,2(2):14

    • [52] Liu Q,Zhang Y H,Liu B J,et al.How does biochar influence soil N cycle?A meta-analysis[J].Plant and Soil,2018,426(1/2):211-225

    • [53] Spokas K A.Impact of biochar field aging on laboratory greenhouse gas production potentials[J].GCB Bioenergy,2013,5(2):165-176

    • [54] Lin Y X,Ding W X,Liu D Y,et al.Wheat straw-derived biochar amendment stimulated N2O emissions from rice paddy soils by regulating the amoA genes of ammonia-oxidizing bacteria[J].Soil Biology and Biochemistry,2017,113:89-98

    • [55] Hawthorne I,Johnson M S,Jassal R S,et al.Application of biochar and nitrogen influences fluxes of CO2,CH4 and N2O in a forest soil[J].Journal of Environmental Management 2017,192(1):203-214

    • [56] Escuer-Gatius J,Shanskiy M,Soosaar K,et al.High-temperature hay biochar application into soil increases N2O fluxes[J].Agronomy,2020,10(1):109

    • [57] Sun L Y,Li L,Chen Z Z,et al.Combined effects of nitrogen deposition and biochar application on emissions of N2O,CO2 and NH3 from agricultural and forest soils[J].Soil Science and Plant Nutrition,2014,60(2):254-265

    • [58] Mørkved P T,Dörsch P,Bakken L R.The N2O product ratio of nitrification and its dependence on long-term changes in soil pH[J].Soil Biology & Biochemistry,2007,39(8):2048-2057

    • [59] Horák J,Kotuš T,Toková L,et al.A sustainable approach for improving soil properties and reducing N2O emissions is possible through initial and repeated biochar application[J].Agronomy,2021,11(3):582

    • [60] Liu B B,Morkved P T,Frostegard A,et al.Denitrification gene pools,transcription and kinetics of NO,N2O and N2 production as affected by soil pH[J].FEMS Microbiol Ecol,2010,72(3):407-417

    • [61] van Zwieten L,Kimber S,Morris S,et al.Influence of biochars on flux of N2O and CO2 from Ferrosol[J].Australian Journal of Soil Research,2010,48(7):555-568

    • [62] Fan C H,Chen H,Li B,et al.Biochar reduces yield-scaled emissions of reactive nitrogen gases from vegetable soils across China[J].Biogeosciences,2017,14(11):2851-2863

    • [63] Cayuela M L,Sanchez-Monedero M A,Roig A,et al.Biochar and denitrification in soils:when,how much and why does biochar reduce N2O emissions?[J].Scientific Reports,2013,3:1732

    • [64] Yuan H J,Zhang Z J,Li M Y,et al.Biochar's role as an electron shuttle for mediating soil N2O emissions[J].Soil Biology and Biochemistry,2019,133:94-96

    • [65] Yuan D,Yuan H J,He X D,et al.Identification and verification of key functional groups of biochar influencing soil N2O emission[J].Biology and Fertility of Soils,2021,57(4):447-456

    • [66] Chen G H,Zhang Z R,Zhang Z Y,et al.Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures[J].Science of the Total Environment,2018,615(15):1547-1556

    • [67] Harter J,Krause H M,Schuettler S,et al.Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community[J].ISME Journal,2014,8(3):660-674

    • [68] Ji C,Li S Q,Geng Y J,et al.Differential responses of soil N2O to biochar depend on the predominant microbial pathway[J].Applied Soil Ecology,2020,145:103348

    • [69] Zhang L Y,Jing Y M,Chen C R,et al.Effects of biochar application on soil nitrogen transformation,microbial functional genes,enzyme activity,and plant nitrogen uptake:a meta-analysis of field studies[J].GCB Bioenergy,2021,13(12):1859-1873

    • [70] Cleemput O V.Subsoils:chemo-and biological denitrification,N2O and N2 emissions[J].Nutrient Cycling in Agroecosystems,1998,52(2/3):187-194

    • [71] Bremner J M,Blackmer A M,Waring S A.Formation of nitrous oxide and dinitrogen by chemical decomposition of hydroxylamine in soils[J].Soil Biology and Biochemistry,1980,12(3):263-269

    • [72] Rubasinghege G,Spak S N,Stanier C O,et al.Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate[J].Environmental Science Technology 2011,45(7):2691-2697

    • [73] Lin X R,Spokas K,Venterea R,et al.Assessing microbial contributions to N2O impacts following biochar additions[J].Agronomy,2014,4(4):478-496

    • [74] Cornelissen G,Rutherford D W,Arp H P,et al.Sorption of pure N2O to biochars and other organic and inorganic materials under anhydrous conditions[J].Environmental Science & Technology,2013,47(14):7704-7712

    • [75] Spokas K A,Koskinen W C,Baker J M,et al.Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil[J].Chemosphere,2009,77(4):574-581

    • [76] Yanai Y,Toyota K,Okazaki M.Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments[J].Soil Science and Plant Nutrition,2007,53(2):181-188

    • [77] Liu X Y,Qu J J,Li L Q,et al.Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies?A cross site field experiment from South China[J].Ecological Engineering,2012,42:168-173

    • [78] Quin P,Joseph S,Husson O,et al.Lowering N2O emissions from soils using eucalypt biochar:the importance of redox reactions[J].Scientific Reports,2015,5:16773

    • [79] He C H,Manevski K,Andersen M,et al.Abiotic mechanisms for biochar effects on soil N2O emission[J].International Agrophysics,2019,33(4):537-546

    • [80] Avdeev V I,Ruzankin S F,Zhidomirov G M J K,et al.Molecular mechanism of direct alkene oxidation with nitrous oxide:DFT analysis[J].Kinetics and Catalysis,2005,46(2):177-188

    • [81] Yu Z,Chen L,Pan S,et al.Feedstock determines biochar-induced soil priming effects by stimulating the activity of specific microorganisms[J].European Journal of Soil Science,2018,69(3):521-534

    • [82] Li S,Harris S,Anandhi A,et al.Predicting biochar properties and functions based on feedstock and pyrolysis temperature:a review and data syntheses[J].Journal of Cleaner Production,2019,215(0959-6526):890-902

    • [83] Keiluweit M,Nico P S,Johnson M G,et al.Dynamic molecular structure of plant biomass-derived black carbon(biochar)[J].Environmental Science & Technology,2010,44(4):1247-1253

    • [84] Bird M I,Wurster C M,Silva P HD P,et al.Algal biochar:production and properties[J].Bioresource Technology,2011,102(2):1886-1891

    • [85] Liao J Y,Hu A,Zhao Z W,et al.Biochar with large specific surface area recruits N2O-reducing microbes and mitigate N2O emission[J].Soil Biology and Biochemistry,2021,156:108212

    • [86] Shakoor A,Arif M S,Shahzad S M,et al.Does biochar accelerate the mitigation of greenhouse gaseous emissions from agricultural soil?A global meta-analysis[J].Environmental Research,2021,202:111789

    • [87] Duan P P,Zhang X,Zhang Q Q,et al.Field-aged biochar stimulated N2O production from greenhouse vegetable production soils by nitrification and denitrification[J].Science of the Total Environment,2018,642:1303-1310

    • [88] Wang L,Gao C C,Yang K,et al.Effects of biochar aging in the soil on its mechanical property and performance for soil CO2 and N2O emissions[J].Science of the Total Environment,2021,782(15):146824

    • [89] Wang L,Yang K,Gao C C,et al.Effect and mechanism of biochar on CO2 and N2O emissions under different nitrogen fertilization gradient from an acidic soil[J].Science of the Total Environment,2020,747:141265

    • [90] Stark J M,Firestone M K.Mechanisms for soil moisture effects on activity of nitrifying bacteria[J].Applied Environmental Microbiology,1995,61(1):218-221

  • 参考文献

    • [1] IPCC.Summary for policymakers[R]//Climate Change 2021:the Physical Science Basis.Cambridge,UK,and New York,USA:Cambridge University Press,2021

    • [2] Flato G,Marotzke J,Abiodun B,et al.Evaluation of climate models[R]//IPCC.Climate Change 2013:the Physical Science Basis.Cambridge,UK,and New York,USA:Cambridge University Press,2013

    • [3] Prather M J,Holmes C D,Hsu J.Reactive greenhouse gas scenarios:systematic exploration of uncertainties and the role of atmospheric chemistry[J].Geophysical Research Letters,2012,39(9):L09803

    • [4] Minschwaner K,Salawitch R J,McElroy M B.Absorption of solar radiation by O2:implications for O3 and lifetimes of N2O,CFCl3,and CF2Cl2[J].Journal of Geophysical Research:Atmospheres,1993,98(D6):10543-10561

    • [5] Volk C M,Elkins J W,Fahey D W,et al.Evaluation of source gas lifetimes from stratospheric observations[J].Journal of Geophysical Research:Atmospheres,1997,102(D21):25543-25564

    • [6] Kaiser J,Röckmann T,Brenninkmeijer C A M.Wavelength dependence of isotope fractionation in N2O photolysis[J].Physical Chemistry Chemical Physics,2002,4(18):4420-4430

    • [7] Prinn R G,Weiss R F,Arduini J,et al.History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment(AGAGE)[J].Earth System Science Data,2018,10(2):985-1018

    • [8] Hu H W,Chen D L,He J Z,et al.Microbial regulation of terrestrial nitrous oxide formation:understanding the biological pathways for prediction of emission rates[J].FEMS Microbiology Reviews,2015,39(5):729-749

    • [9] Kroezeab A C.The global nitrous oxide budget revisited[J].Greenhouse Gas Measurement and Management,2011,1(1):17-26

    • [10] Tian H Q,Xu R T,Canadell J G,et al.A comprehensive quantification of global nitrous oxide sources and sinks[J].Nature,2020,586(7828):248-256

    • [11] Baggs E M.Soil microbial sources of nitrous oxide:recent advances in knowledge,emerging challenges and future direction[J].Current Opinion in Environmental Sustainability,2011,3(5):321-327

    • [12] Kallenbach C,Rolston D,Horwath W.Cover cropping affects soil N2O and CO2 emissions differently depending on type of irrigation[J].Ecosystems & Environment,2010,137(3/4):251-260

    • [13] Wang S W,Shan J,Xia Y Q,et al.Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification:a field experiment over two consecutive rice-growing seasons[J].Science of the Total Environment,2017,593/594:347-356

    • [14] Wu D,Senbayram M,Well R,et al.Nitrification inhibitors mitigate N2O emissions more effectively under straw-induced conditions favoring denitrification[J].Soil Biology and Biochemistry,2017,104:197-207

    • [15] Nishizawa T,Quan A H,Kai A,et al.Inoculation with N2-generating denitrifier strains mitigates N2O emission from agricultural soil fertilized with poultry manure[J].Biology & Fertility of Soils,2014,50(6):1001-1007

    • [16] Domeignoz-Horta L A,Putz M,Spor A,et al.Non-denitrifying nitrous oxide-reducing bacteria:an effective N2O sink in soil[J].Soil Biology & Biochemistry,2016,103:376-379

    • [17] Cayuela M L,van Zwieten L,Singh B P,et al.Biochar's role in mitigating soil nitrous oxide emissions:a review and meta-analysis[J].Agriculture,Ecosystems & Environment,2014,191(15):5-16

    • [18] Case S D C,McNamara N P,Reay D S,et al.The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil:the role of soil aeration[J].Soil Biology & Biochemistry,2012,51:125-134

    • [19] Shaaban M,Van Zwieten L,Bashir S,et al.A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution[J].Journal of Environmental Management,2018,228(15):429-440

    • [20] Scheer C,Grace P R,Rowlings D W,et al.Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales,Australia[J].Plant and Soil,2011,345(1/2):47-58

    • [21] Suddick E C,Six J.An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation[J].Science of the Total Environment,2013,465:298-307

    • [22] Rittl T F,Butterbach-Bahl K,Basile C M,et al.Greenhouse gas emissions from soil amended with agricultural residue biochars:effects of feedstock type,production temperature and soil moisture[J].Biomass Bioenergy,2018,117:1-9

    • [23] Buchkina N P,Hüppi R,Leifeld J.Biochar and short-term N2O and CO2 emission from plant residue-amended soil with different fertilisation history[J].Zemdirbyste-Agriculture,2019,106(2):99-106

    • [24] Van Z L,Singh B,Joseph S,et al.Biochar and emission of non-CO2 greenhouse gases from soil[M]//Biochar for Environmental Management:Science and Technology.London,UK:Earthscan,2009:227-249

    • [25] Verhoeven E,Six J.Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard:an assessment across two years[J].Agriculture,Ecosystems and Environment,2014,191(15):27-38.DOI:10.1016/j.agee.2014.03.008

    • [26] Clough T J,Bertram J E,Ray J L,et al.Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil[J].Soil Science Society of America Journal,2010,74(3):852-860

    • [27] Lehmann J,Joseph S.Biochar for environmental management:an introduction[M]//Biochar for Environmental Management:Science and Technology.London,UK:Earthscan,2009:1-11

    • [28] Sombroek W G.Amazon soils:a reconnaissance of the soils of the Brazilian Amazon region[J].Revista Geográfica,1967,133(4):550

    • [29] Kim K H,Kim J Y,Cho T S,et al.Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine(Pinus rigida)[J].Bioresource Technology,2012,118:158-162

    • [30] Wu Z,Zhang Q Q,Zhang X,et al.Biochar-enriched soil mitigated N2O and NO emissions similarly as fresh biochar for wheat production[J].Science of the Total Environment,2020,701:134943

    • [31] Godlewska P,Schmidt H P,Yong S O,et al.Biochar for composting improvement and contaminants reduction:a review[J].Bioresource Technology,2017,246:193-202

    • [32] Zhang X Y,Gao B,Fang J E,et al.Chemically activated hydrochar as an effective adsorbent for volatile organic compounds(VOCs)[J].Chemosphere,2019,218:680-686

    • [33] Yin G C,Song X W,Tao L,et al.Novel Fe-Mn binary oxide-biochar as an adsorbent for removing Cr(Ⅲ)from aqueous solutions[J].Journal of Geophysical Research:Atmospheres,2020,389:124465

    • [34] Fang Z,Gao Y R,Bolan N,et al.Conversion of biological solid waste to graphene-containing biochar for water remediation:a critical review[J].Chemical Engineering Journal,2020,390:124611

    • [35] Lu L,Yu W T,Wang Y F,et al.Application of biochar-based materials in environmental remediation:from multi-level structures to specific devices[J].Biochar,2020,2:1-13

    • [36] Chen H B,Xing Y,Wang H L,et al.Animal carcass-and wood-derived biochars improved nutrient bioavailability,enzyme activity,and plant growth in metal-phthalic acid ester co-contaminated soils:a trial for reclamation and improvement of degraded soils[J].Journal of Environmental Management,2020,261(3):110246

    • [37] Bandara T,Franks A,Xu J M,et al.Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils[J].Critical Reviews in Environmental Science and Technology,2019,50(4):903-978

    • [38] Wu P,Ata-Ul-Karim S T,Singh B P,et al.A scientometric review of biochar research in the past 20 years(1998-2018)[J].Biochar,2019,27(1):23-43

    • [39] Cao X D,Ma L N,Gao B,et al.Dairy-manure derived biochar effectively sorbs lead and atrazine[J].Environmental Science & Technology,2009,43(9):3285-3291

    • [40] Jiang T Y,Jiang J,Xu R K,et al.Adsorption of Pb(Ⅱ)on variable charge soils amended with rice-straw derived biochar[J].Chemosphere,2012,89(3):249-256

    • [41] Li Y F,Hu S D,Chen J H,et al.Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions:a review[J].Plant and Soil,2018,18(2):546-563

    • [42] Fungo B,Lehmann J,Kalbitz K,et al.Ammonia and nitrous oxide emissions from a field Ultisol amended with tithonia green manure,urea,and biochar[J].Biology and Fertility of Soils,2019,55(2):135-148

    • [43] Zhang A F,Liu Y M,Pan G X,et al.Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain[J].Plant and Soil,2012,351(1/2):263-275

    • [44] Rondon M A,Ramirez J A,Lehmann J.Greenhouse gas emissions decrease with charcoal additions to tropical soils[C]//Proceedings of the 3rd USDA Symposium on Greenhouse Gases & Carbon Sequestration in Agriculture and Forestry,2005:21-24

    • [45] Wang H,Yi H T,Zhang X,et al.Biochar mitigates greenhouse gas emissions from an acidic tea soil[J].Polish Journal of Environmental Studies,2020,29(1):323-330

    • [46] Malghani S,Gleixner G,Trumbore S E.Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions[J].Soil Biology & Biochemistry,2013,62:137-146

    • [47] Lan Z M,Chen C R,Rezaei R M,et al.High pyrolysis temperature biochars reduce nitrogen availability and nitrous oxide emissions from an acid soil[J].GCB Bioenergy,2018,10(12):930-945

    • [48] Case S D C,McNamara N P,Reay D S,et al.Can biochar reduce soil greenhouse gas emissions from a Miscanthus bioenergy crop?[J].GCB Bioenergy,2014,6(1):76-89

    • [49] Wu Z,Zhang X,Dong Y B,et al.Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system:six-year field observation and meta-analysis[J].Agricultural and Forest Meteorology,2019,278(15):107625

    • [50] He Y H,Zhou X H,Jiang L L,et al.Effects of biochar application on soil greenhouse gas fluxes:a meta-analysis[J].GCB Bioenergy,2016,9(4):743-755

    • [51] Song X Z,Pan G X,Zhang C,et al.Effects of biochar application on fluxes of three biogenic greenhouse gases:a meta-analysis[J].Ecosystem Health and Sustainability,2017,2(2):14

    • [52] Liu Q,Zhang Y H,Liu B J,et al.How does biochar influence soil N cycle?A meta-analysis[J].Plant and Soil,2018,426(1/2):211-225

    • [53] Spokas K A.Impact of biochar field aging on laboratory greenhouse gas production potentials[J].GCB Bioenergy,2013,5(2):165-176

    • [54] Lin Y X,Ding W X,Liu D Y,et al.Wheat straw-derived biochar amendment stimulated N2O emissions from rice paddy soils by regulating the amoA genes of ammonia-oxidizing bacteria[J].Soil Biology and Biochemistry,2017,113:89-98

    • [55] Hawthorne I,Johnson M S,Jassal R S,et al.Application of biochar and nitrogen influences fluxes of CO2,CH4 and N2O in a forest soil[J].Journal of Environmental Management 2017,192(1):203-214

    • [56] Escuer-Gatius J,Shanskiy M,Soosaar K,et al.High-temperature hay biochar application into soil increases N2O fluxes[J].Agronomy,2020,10(1):109

    • [57] Sun L Y,Li L,Chen Z Z,et al.Combined effects of nitrogen deposition and biochar application on emissions of N2O,CO2 and NH3 from agricultural and forest soils[J].Soil Science and Plant Nutrition,2014,60(2):254-265

    • [58] Mørkved P T,Dörsch P,Bakken L R.The N2O product ratio of nitrification and its dependence on long-term changes in soil pH[J].Soil Biology & Biochemistry,2007,39(8):2048-2057

    • [59] Horák J,Kotuš T,Toková L,et al.A sustainable approach for improving soil properties and reducing N2O emissions is possible through initial and repeated biochar application[J].Agronomy,2021,11(3):582

    • [60] Liu B B,Morkved P T,Frostegard A,et al.Denitrification gene pools,transcription and kinetics of NO,N2O and N2 production as affected by soil pH[J].FEMS Microbiol Ecol,2010,72(3):407-417

    • [61] van Zwieten L,Kimber S,Morris S,et al.Influence of biochars on flux of N2O and CO2 from Ferrosol[J].Australian Journal of Soil Research,2010,48(7):555-568

    • [62] Fan C H,Chen H,Li B,et al.Biochar reduces yield-scaled emissions of reactive nitrogen gases from vegetable soils across China[J].Biogeosciences,2017,14(11):2851-2863

    • [63] Cayuela M L,Sanchez-Monedero M A,Roig A,et al.Biochar and denitrification in soils:when,how much and why does biochar reduce N2O emissions?[J].Scientific Reports,2013,3:1732

    • [64] Yuan H J,Zhang Z J,Li M Y,et al.Biochar's role as an electron shuttle for mediating soil N2O emissions[J].Soil Biology and Biochemistry,2019,133:94-96

    • [65] Yuan D,Yuan H J,He X D,et al.Identification and verification of key functional groups of biochar influencing soil N2O emission[J].Biology and Fertility of Soils,2021,57(4):447-456

    • [66] Chen G H,Zhang Z R,Zhang Z Y,et al.Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures[J].Science of the Total Environment,2018,615(15):1547-1556

    • [67] Harter J,Krause H M,Schuettler S,et al.Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community[J].ISME Journal,2014,8(3):660-674

    • [68] Ji C,Li S Q,Geng Y J,et al.Differential responses of soil N2O to biochar depend on the predominant microbial pathway[J].Applied Soil Ecology,2020,145:103348

    • [69] Zhang L Y,Jing Y M,Chen C R,et al.Effects of biochar application on soil nitrogen transformation,microbial functional genes,enzyme activity,and plant nitrogen uptake:a meta-analysis of field studies[J].GCB Bioenergy,2021,13(12):1859-1873

    • [70] Cleemput O V.Subsoils:chemo-and biological denitrification,N2O and N2 emissions[J].Nutrient Cycling in Agroecosystems,1998,52(2/3):187-194

    • [71] Bremner J M,Blackmer A M,Waring S A.Formation of nitrous oxide and dinitrogen by chemical decomposition of hydroxylamine in soils[J].Soil Biology and Biochemistry,1980,12(3):263-269

    • [72] Rubasinghege G,Spak S N,Stanier C O,et al.Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate[J].Environmental Science Technology 2011,45(7):2691-2697

    • [73] Lin X R,Spokas K,Venterea R,et al.Assessing microbial contributions to N2O impacts following biochar additions[J].Agronomy,2014,4(4):478-496

    • [74] Cornelissen G,Rutherford D W,Arp H P,et al.Sorption of pure N2O to biochars and other organic and inorganic materials under anhydrous conditions[J].Environmental Science & Technology,2013,47(14):7704-7712

    • [75] Spokas K A,Koskinen W C,Baker J M,et al.Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil[J].Chemosphere,2009,77(4):574-581

    • [76] Yanai Y,Toyota K,Okazaki M.Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments[J].Soil Science and Plant Nutrition,2007,53(2):181-188

    • [77] Liu X Y,Qu J J,Li L Q,et al.Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies?A cross site field experiment from South China[J].Ecological Engineering,2012,42:168-173

    • [78] Quin P,Joseph S,Husson O,et al.Lowering N2O emissions from soils using eucalypt biochar:the importance of redox reactions[J].Scientific Reports,2015,5:16773

    • [79] He C H,Manevski K,Andersen M,et al.Abiotic mechanisms for biochar effects on soil N2O emission[J].International Agrophysics,2019,33(4):537-546

    • [80] Avdeev V I,Ruzankin S F,Zhidomirov G M J K,et al.Molecular mechanism of direct alkene oxidation with nitrous oxide:DFT analysis[J].Kinetics and Catalysis,2005,46(2):177-188

    • [81] Yu Z,Chen L,Pan S,et al.Feedstock determines biochar-induced soil priming effects by stimulating the activity of specific microorganisms[J].European Journal of Soil Science,2018,69(3):521-534

    • [82] Li S,Harris S,Anandhi A,et al.Predicting biochar properties and functions based on feedstock and pyrolysis temperature:a review and data syntheses[J].Journal of Cleaner Production,2019,215(0959-6526):890-902

    • [83] Keiluweit M,Nico P S,Johnson M G,et al.Dynamic molecular structure of plant biomass-derived black carbon(biochar)[J].Environmental Science & Technology,2010,44(4):1247-1253

    • [84] Bird M I,Wurster C M,Silva P HD P,et al.Algal biochar:production and properties[J].Bioresource Technology,2011,102(2):1886-1891

    • [85] Liao J Y,Hu A,Zhao Z W,et al.Biochar with large specific surface area recruits N2O-reducing microbes and mitigate N2O emission[J].Soil Biology and Biochemistry,2021,156:108212

    • [86] Shakoor A,Arif M S,Shahzad S M,et al.Does biochar accelerate the mitigation of greenhouse gaseous emissions from agricultural soil?A global meta-analysis[J].Environmental Research,2021,202:111789

    • [87] Duan P P,Zhang X,Zhang Q Q,et al.Field-aged biochar stimulated N2O production from greenhouse vegetable production soils by nitrification and denitrification[J].Science of the Total Environment,2018,642:1303-1310

    • [88] Wang L,Gao C C,Yang K,et al.Effects of biochar aging in the soil on its mechanical property and performance for soil CO2 and N2O emissions[J].Science of the Total Environment,2021,782(15):146824

    • [89] Wang L,Yang K,Gao C C,et al.Effect and mechanism of biochar on CO2 and N2O emissions under different nitrogen fertilization gradient from an acidic soil[J].Science of the Total Environment,2020,747:141265

    • [90] Stark J M,Firestone M K.Mechanisms for soil moisture effects on activity of nitrifying bacteria[J].Applied Environmental Microbiology,1995,61(1):218-221

  • 地址:江苏省南京市宁六路219号    邮编:210044

    联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

    南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司