en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

肖启涛,男,博士,研究方向为内陆水体温室气体循环及其控制机制.qtxiao@niglas.ac.cn

中图分类号:X524

文献标识码:A

DOI:10.13878/j.cnki.jnuist.2022.01.003

参考文献 1
Tranvik L J,Downing J A,Cotner J B,et al.Lakes and reservoirs as regulators of carbon cycling and climate[J].Limnology and Oceanography,2009,54(6):2298-2314
参考文献 2
Bastviken D,Tranvik L J,Downing J A,et al.Freshwater methane emissions offset the continental carbon sink[J].Science,2011,331(6013):50
参考文献 3
Raymond P A,Hartmann J,Lauerwald R,et al.Global carbon dioxide emissions from inland waters[J].Nature,2013,503(7476):355-359
参考文献 4
Lapierre J-F,Guillemette F,Berggren M,et al.Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems[J].Nature Communications,2013,4(1):171-184
参考文献 5
Borges A V,Darchambeau F,Teodoru C R.Globally significant greenhouse-gas emissions from African inland waters[J].Nature Geoscience,2015,8(8):637-642
参考文献 6
Holgerson M,Raymond P.Large contribution to inland water CO2 and CH4 emissions from very small ponds[J].Nature Geoscience,2016,9(3):222-229
参考文献 7
Sobek S,Tranvik L J,Prairie Y T,et al.Patterns and regulation of dissolved organic carbon:an analysis of 7,500 widely distributed lakes[J].Limnology and Oceanography,2007,52(3):1208-1219
参考文献 8
叶琳琳,孔繁翔,史小丽,等.富营养化湖泊溶解性有机碳生物可利用性研究进展[J].生态学报,2014,34(4):779-788YE Linlin,KONG Fanxiang,SHI Xiaoli,et al.The bioavailability of dissolved organic carbon in the eutrophic lakes[J].Acta Ecologica Sinica,2014,34(4):779-788
参考文献 9
杨平,唐晨,陆苗慧,等.亚热带河口区水库DOC和DIC浓度时空变化特征[J].湖泊科学,2021,33(4):1123-1137YANG Ping,TANG Chen,LU Miaohui,et al.Spatialtemporal variations in water dissolved organic carbon and dissolved inorganic carbon concentrations in Wenwusha reservoir in subtropical estuary,southwest China[J].Journal of Lake Sciences,2021,33(4):1123-1137
参考文献 10
Carpenter S R,Cole J J,Pace M L,et al.Ecosystem subsidies:terrestrial support of aquatic food webs from 13C addition to contrasting lakes[J].Ecology,2005,86(10):2737-2750
参考文献 11
Baines S B,Pace M L.The production of dissolved organic matter by phytoplankton and its importance to bacteria:patterns across marine and freshwater systems[J].Limnology and Oceanography,1991,36(6):1078-1090
参考文献 12
Pacheco F S,Roland F,Downing J A.Eutrophication reverses whole-lake carbon budgets[J].Inland Waters,2014,4(1):41-48
参考文献 13
Song K S,Wen Z D,Shang Y X,et al.Quantification of dissolved organic carbon(DOC)storage in lakes and reservoirs of mainland China[J].Journal of Environmental Management,2018,217:391-402
参考文献 14
Ho J C,Michalak A M,Pahlevan N,et al.Widespread global increase in intense lake phytoplankton blooms since the 1980s[J].Nature,2019,574(7780):667-670
参考文献 15
王晓锋,袁兴中,陈槐,等.河流CO2与CH4排放研究进展[J].环境科学,2017,38(12):5352-5366WANG Xiaofeng,YUAN Xingzhong,CHEN Huai,et al.Review of CO2 and CH4 emissions from rivers[J].Environmental Science,2017,38(12):5352-5366
参考文献 16
杨平,仝川.淡水水生生态系统温室气体排放的主要途径及影响因素研究进展[J].生态学报,2015,35(20):6868-6880YANG Ping,TONG Chuan.Emission paths and measurement methods for greenhouse gas fluxes from freshwater ecosystems:a review[J].Acta Ecologica Sinica,2015,35(20):6868-6880
参考文献 17
Stanley E H,Casson N J,Christel S T,et al.The ecology of methane in streams and rivers:patterns,controls,and global significance[J].Ecological Monographs,2016,86(2):146-171
参考文献 18
Zhang L W,Xia X H,Liu S D,et al.Significant methane ebullition from alpine permafrost rivers on the east Qinghai-Tibet Plateau[J].Nature Geoscience,2020,13(5):349-354
参考文献 19
商东耀,肖启涛,胡正华,等.富营养化湖区CH4排放特征及其影响因素[J].环境科学,2018,39(11):5227-5236SHANG Dongyao,XIAO Qitao,HU Zhenghua,et al.CH4 emissions characteristics and its influencing factors in an eutrophic lake[J].Environmental Science,2018,39(11):5227-5236
参考文献 20
吴庆龙,邢鹏,李化炳,等.草藻型稳态转换对湖泊微生物结构及其碳循环功能的影响[J].微生物学通报,2013,40(1):87-97WU Qinglong,XING Peng,LI Huabing,et al.Impacts of regime shift between phytoplankton and macrophyte on the microbial community structure and its carbon cycling in lakes[J].Microbiology China,2013,40(1):87-97
参考文献 21
Beaulieu J J,Del Sontro T,Downing J A.Eutrophication will increase methane emissions from lakes and impoundments during the 21st century[J].Nature Communications,2019,10(1):171-184
参考文献 22
张佩,王晓锋,袁兴中.中国淡水生态系统甲烷排放基本特征及研究进展[J].中国环境科学,2020,40(8):3567-3579ZHANG Pei,WANG Xiaofeng,YUAN Xingzhong.General characteristics and research progress of methane emissions from freshwater ecosystems in China[J].China Environmental Science,2020,40(8):3567-3579
参考文献 23
Huttunen J T,Alm J,Liikanen A,et al.Fluxes of methane,carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions[J].Chemosphere,2003,52(3):609-621
参考文献 24
刘艺,许浩廉,毛羽丰,等.铜绿微囊藻衰亡过程中产甲烷动态及关键影响因子[J].土木与环境工程学报,2019,41(5):132-140LIU Yi,XU Haolian,MAO Yufeng,et al.Methane-producing dynamics and key influencing factors during the decay of Microcystis aeruginosa[J].Journal of Civil and Environmental Engineering,2019,41(5):132-140
参考文献 25
朱广伟,秦伯强,张运林,等.2005—2017年北部太湖水体叶绿素a和营养盐变化及影响因素[J].湖泊科学,2018,30(2):279-295ZHU Guangwei,QIN Boqiang,ZHANG Yunlin,et al.Variations and driving factors of nutrients and chlorophyll-a concentrations in northern region of Lake Taihu,China,2005-2017[J].Journal of Lake Sciences,2018,30(2):279-295
参考文献 26
Shi K,Zhang Y L,Zhang Y B,et al.Phenology of phytoplankton blooms in a trophic lake observed from long-term MODIS data[J].Environmental Science & Technology,2019,53(5):2324-2331
参考文献 27
Xiao Q T,Zhang M,Hu Z H,et al.Spatial variations of methane emission in a large shallow eutrophic lake in subtropical climate[J].Journal of Geophysical Research:Biogeosciences,2017,122(7):1597-1614
参考文献 28
Lee X H,Liu S D,Xiao W,et al.The Taihu eddy flux network:an observational program on energy,water,and greenhouse gas fluxes of a large freshwater lake[J].Bulletin of the American Meteorological Society,2014,95(10):1583-1594
参考文献 29
Xiao Q T,Xu X F,Duan H T,et al.Eutrophic Lake Taihu as a significant CO2 source during 2000-2015[J].Water Research,2020,170:115331
参考文献 30
肖启涛.太湖CH4通量的空间格局及影响因子分析[D].南京:南京信息工程大学,2017XIAO Qitao.Spatial pattern of CH4 flux and its impact factors analysis in Lake Taihu [D].Nanjing:Nanjing University of Information Science & Technology,2017
参考文献 31
Qi T C,Xiao Q T,Cao Z G,et al.Satellite estimation of dissolved carbon dioxide concentrations in China's Lake Taihu[J].Environmental Science & Technology,2020,54(21):13709-13718
参考文献 32
肖启涛.太湖水-气界面温室气体(CO2、CH4、N2O)通量研究[D].南京:南京信息工程大学,2014XIAO Qitao.Study on greenhouse gases(CO2,CH4,and N2O)fluxes of water-air interface in Lake Taihu [D].Nanjing:Nanjing University of Information Science & Technology,2014
参考文献 33
肖启涛,胡正华,James Deng,等.杀菌剂对湖泊水体温室气体浓度分析的影响[J].环境科学,2014,35(1):356-364XIAO Qitao,HU Zhenghua,DENG James,et al.Effects of antiseptic on the analysis of greenhouse gases concentrations in lake water[J].Environmental Science,2014,35(1):356-364
参考文献 34
肖启涛,张弥,胡正华,等.基于不同模型的大型湖泊水-气界面气体传输速率估算[J].湖泊科学,2018,30(3):790-801XIAO Qitao,ZHANG Mi,HU Zhenghua,et al.Estimate of gas transfer velocity between water-air interface in a large lake based on different models:a case study of Lake Taihu [J].Journal of Lake Sciences,2018,30(3):790-801
参考文献 35
Cole J J,Caraco N F.Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6[J].Limnology and Oceanography,1998,43(4):647-656
参考文献 36
秦伯强.浅水湖泊湖沼学与太湖富营养化控制研究[J].湖泊科学,2020,32(5):1229-1243QIN Boqiang.Shallow lake limnology and control of eutrophication in Lake Taihu[J].Journal of Lake Sciences,2020,32(5):1229-1243
参考文献 37
周苗,李思亮,丁虎,等.地表流域有机碳地球化学研究进展[J].生态学杂志,2018,37(1):255-264ZHOU Miao,LI Siliang,DING Hu,et al.Advances in study on organic carbon characteristics in the riverine systems[J].Chinese Journal of Ecology,2018,37(1):255-264
参考文献 38
赖曼婷,钟君,王万发,等.白龙江溶解有机碳的空间分布、来源及其控制因素探究[J].地球与环境,2021,49(3):227-237LAI Manting,ZHONG Jun,WANG Wanfa,et al.Spatial distribution,sources and controlling factors of dissolved organic carbon of Bailong River[J].Earth and Environment,2021,49(3):227-237
参考文献 39
Qin B Q,Xu P Z,Wu Q L,et al.Environmental issues of Lake Taihu,China[J].Hydrobiologia,2007,581(1):3-14
参考文献 40
Xiao Q T,Xu X F,Zhang M,et al.Coregulation of nitrous oxide emissions by nitrogen and temperature in China's third largest freshwater lake(Lake Taihu)[J].Limnology and Oceanography,2019,64(3):1070-1086
参考文献 41
Perga M-E,Maberly S C,Jenny J-P,et al.A century of human-driven changes in the carbon dioxide concentration of lakes[J].Global Biogeochemical Cycles,2016,30(2):93-104
参考文献 42
Sugiyama Y,Anegawa A,Kumagai T,et al.Distribution of dissolved organic carbon in lakes of different trophic types[J].Limnology,2004,5(3):165-176
参考文献 43
Xiao Q T,Duan H T,Qi T C,et al.Environmental investments decreased partial pressure of CO2 in a small eutrophic urban lake:evidence from long-term measurements[J].Environmental Pollution,2020,263:114433
参考文献 44
燕姝雯,余辉,张璐璐,等.2009年环太湖入出湖河流水量及污染负荷通量[J].湖泊科学,2011,23(6):855-862YAN Shuwen,YU hui,ZHANG Lulu,et al.Water quantity and pollutant fluxes of inflow and outflow rivers of Lake Taihu,2009[J].Journal of Lake Sciences,2011,23(6):855-862
参考文献 45
Yvon-Durocher G,Allen A P,Bastviken D,et al.Methane fluxes show consistent temperature dependence across microbial to ecosystem scales[J].Nature,2014,507(7493):488-491
参考文献 46
肖启涛,胡正华,张弥,等.水力调控对湖泊甲烷扩散通量的影响[J].湖泊科学,2021,33(2):561-570XIAO Qitao,HU Zhenghua,ZHANG Mi,et al.Effects of water diversion on methane diffusion flux across the water-air interface in lakes[J].Journal of Lake Sciences,2021,33(2):561-570
参考文献 47
Xu H,Paerl H W,Qin B Q,et al.Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu,China[J].Limnology and Oceanography,2010,55(1):420-432
参考文献 48
Wen Z D,Song K S,Zhao Y,et al.Carbon dioxide and methane supersaturation in lakes of semi-humid/semi-arid region,northeastern China[J].Atmospheric Environment,2016,138:65-73
参考文献 49
Kone Y J M,Abril G,Delille B,et al.Seasonal variability of methane in the rivers and lagoons of Ivory Coast(West Africa)[J].Biogeochemistry,2010,100(1/2/3):21-37
参考文献 50
Jane S F,Hansen G J A,Kraemer B M,et al.Widespread deoxygenation of temperate lakes[J].Nature,2021,594(7861):66-70
参考文献 51
Crawford J T,Stanley E H.Controls on methane concentrations and fluxes in streams draining human-dominated landscapes[J].Ecological Applications,2016,26(5):1581-1591
参考文献 52
West W E,Coloso J J,Jones S E.Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment[J].Freshwater Biology,2012,57(5):949-955
参考文献 53
荀凡,杜先,陈新芳,等.秋季连续打捞蓝藻对水-气界面温室气体通量的影响[J].湖泊科学,2020,32(6):1707-1722XUN Fan,DU Xian,CHEN Xinfang,et al.Effects of continuous cyanobacterial salvaging on greenhouse gas flux on water-air interface in autumn[J].Journal of Lake Sciences,2020,32(6):1707-1722
参考文献 54
Mao R,Chen H M,Li S Y.Phosphorus availability as a primary control of dissolved organic carbon biodegradation in the tributaries of the Yangtze River in the Three Gorges Reservoir region[J].Science of the Total Environment,2017,574:1472-1476
目录contents

    摘要

    湖藻型湖区(西北湖区、梅梁湾、贡湖湾、西南湖区和湖心)为研究对象,基于为期一年的连续野外观测,旨在揭示富营养化湖泊DOC变化特征及其对CH4排放的影响.结果表明,太湖藻型湖区DOC质量浓度均值为4.15 mg/L,且具有显著的空间变化.受外源输送和内部蓝藻增殖影响,西北湖区和梅梁湾DOC质量浓度较高,且其DOC时间变化与流域降雨量紧密相关,尤以西北湖区最为明显(R 2=0.67,P<0.01).但在受外源输送影响较小的湖心区域,其DOC的时间变化主要受蓝藻生物量驱动(R 2=0.60,P<0.01).太湖藻型湖区CH4排放均值为0.083 mmol·m-2·d-1,不同湖区CH4排放量差异明显.藻型湖区较高的蓝藻生物量显著提高了CH4的排放量,且DOC含量是蓝藻影响CH4产生和排放的主要因子.总体上,太湖藻型湖区DOC的累积致使其是CH4排放的热点区域,但DOC对CH4产生和排放的影响受湖泊内部因子和外部因子的综合调控,其潜在的控制机制还需要进一步探讨.

    Abstract

    The carbon cycle in lakes has been receiving great concerns and has become a hot issue.This study aimed at investigating the characteristics of Dissolved Organic Carbon (DOC) and its influence on methane emission based on continuous field sampling in a year cycle from algal-dominated zones of Lake Taihu.Results showed that the DOC with mean value of 4.15 mg/L varied spatially due to external input and internal algal blooms.Overall,peak DOC occurred in Northwest Zone and Meiliang Bay,and temporal variations of DOC in the two zones were associated with basin precipitation,especially for Northwest Zone (R 2=0.67,P<0.01).It should be noted that the temporal variation of DOC in Central Zone were highly positively correlated with algal biomass mostly due to the less external input.The CH4 diffusion emission flux with mean value of 0.083 mmol·m-2·d-1 varied greatly across zones.Algal blooms significantly stimulated the CH4 emissions via increasing DOC concentration.Overall,the algal-dominated lake was a hot spot of CH4 emission due to DOC enrichment.Considering the effects of DOC on lake CH4 emission was regulated by multiple factors related to internal metabolic activities and external loading,further studies are needed to reveal the potential control mechanism.

  • 0 引言

  • 湖泊作为内陆水体的重要组成部分,与陆地生态系统发生强烈的物质和能量交换,也是流域碳等的主要汇集场所.因此,湖泊是全球碳循环的重要结构单元,其碳通量研究已成为全球碳循环研究的前沿和热点问题[1-3].碳生物地球化学循环过程在湖泊生态系统异常活跃,大量内源或者外源型碳在湖泊中经历分解、固定、埋藏和输出等过程,致使湖泊呈现出极其显著的碳源和碳汇等功能,影响区域和全球碳收支[4-6].

  • 湖泊水体中碳的赋存形态主要有溶解有机碳(DOC)、溶解无机碳(DIC)、颗粒有机碳(POC)和颗粒无机碳(PIC),其中DOC是主要的有机碳.DOC是湖泊生态系统食物网的重要组成部分,也是湖泊生态系统结构和功能的重要调节器[7-8].水体DOC按其来源可分为外源性和内源性DOC,外源性DOC主要来自于流域输入,内源DOC主要来自于浮游植物光合作用产物的释放等[8-9].相关研究表明在贫营养湖泊中,DOC来源主要以外源输入为主[10],但在富营养化湖泊中,蓝藻暴发可促使DOC含量升高,DOC以内源性为主[11].另外,研究发现因富营养湖泊中蓝藻大量增值,其DOC含量要显著高于其他湖泊[12-13].考虑到全球湖泊普遍面临着富营养化问题,且湖泊蓝藻暴发呈现增长趋势[14],为深入掌握湖泊碳循环机理和准确估算湖泊碳收支,藻型湖泊DOC来源、生物地球化学过程及其对浮游植物水华过程的响应需要进一步探究.

  • 湖泊水体DOC丰富程度对温室气体产生和排放具有重要影响[15-16].水体甲烷(CH4)产生和排放与DOC紧密相关,众多研究表明CH4与DOC浓度呈显著的正相关关系[1,17-18].水体DOC既可作为底物为CH4产生提供碳源,同时高DOC使水体中氧气消耗快,减少CH4的氧化消耗[15,19-20].富营养湖泊是全球CH4的热点排放区域,受到越来越多的关注[21].在富营养化湖泊中,营养盐等生源要素累积可刺激CH4产生和排放[22-23],但同时藻类增殖提高了新鲜DOC含量,大量新鲜DOC很易降解并产生大量CH4气体[20,24].富营养湖泊DOC积累及其营养负荷对CH4排放的影响模式需要进一步明晰.

  • 太湖位于我国长江中下游区域,是我国第三大淡水湖泊,同时也是湖泊水体出现富营养化问题最早的湖泊之一.近些年太湖蓝藻暴发频次和暴发范围均有明显上升趋势[25-26],其碳循环及其控制过程也受到了极大的关注[27-31].本研究以太湖为研究对象,基于为期一年的逐月野外调查,探讨藻型湖泊DOC变化特征及其对CH4排放影响,以期为深入掌握富营养化湖泊碳循环过程的控制机理及其CH4排放的调控过程提供科学依据.

  • 1 材料与方法

  • 1.1 研究区域

  • 太湖水域面积为2 400km2,平均水深为2m,是典型的亚热带大型浅水湖泊.太湖流域横跨三省一市(江苏省、浙江省、安徽省和上海市),整个流域面积高达36 895km2,流域内水系发达,河网密布,河道长度高达1.2×105 km.另外,太湖及其流域受季风气候影响,四季分明,光照充足,温热条件好,降雨充沛,年降水量约1 154mm,夏季降水多且频繁[32].近几十年来,由于流域经济的快速发展以及湖泊资源的不合理利用,太湖水体富营养化严重,蓝藻水华频繁暴发.太湖水体生态和环境空间分异极大,藻型湖区和草型湖区共存[27-28].草型湖区主要位于太湖的东部(图1),水生植被丰富,水质良好,部分水域清澈见底.根据污染负荷输入和富营养化程度等,太湖藻型湖区可划分为5个部分,即梅梁湾、西北湖区、贡湖湾、湖心区和西南湖区(图1).其中:梅梁湾位于太湖北边,是一个半封闭的湖湾,入湖河流给该区带来了较大的外源负荷输入;西北湖区周边有大量的入湖河流,入湖水量最多,同时入湖河流携带大量外源污染物汇集在该湖区;贡湖湾位于太湖的东北角,连接太湖流域“引江济太”的重要调水通道;湖心区域面积较大,水域开阔,受人为活动影响相对较低;西南湖区连接太湖主要的入湖河道,换水周期快,是浮游植被和沉水植被的过渡区.

  • 1.2 水样采集和分析

  • 本研究在太湖梅梁湾、西北湖区、贡湖湾,湖心区域和西南湖区等藻型湖区均匀设置21个采样点位(图1),进行为期一年的连续采样.在梅梁湾、西北湖区、贡湖湾,湖心区域采样频次为每月一次,西南湖区采样频次为每季度一次.每次采样时,基于GPS精准定位,到达每个采样点位采集水样,用于水体溶解有机碳(DOC)分析.每次采样前先用待采湖水冲洗采样瓶,样品采集完成后,放入带有冰块的冷藏箱里,运回实验室水样经GF/F膜过滤后,通过总有机碳分析仪测定DOC含量.

  • 图1 研究区域及采样点位介绍

  • Fig.1 Geographic locations of study sites

  • 另外,在每个点位采集水样用于溶解CH4含量分析.采样时保证水面没有扰动,采集水表以下约20cm处水样,装入已用待采水样冲洗的玻璃瓶中(体积为300mL),待玻璃瓶装满水样后立即用丁基胶塞密封,确保瓶内无气泡.同时为保证气密性,用封口膜密封瓶塞和玻璃瓶的接口.采集水样在野外保存在冷藏箱中,带回实验室后立即进行预处理,处理流程如下:每个水样先用100mL的高纯氮气(摩尔分数≥99.999%)顶空,然后剧烈摇晃5min,摇晃完成后将玻璃瓶静置,使CH4气体在玻璃瓶顶空部分(气相)和剩余水样 (液相)之间达到动态平衡,最后用带有三通阀的针筒抽取顶空中的CH4气样,通过气相色谱仪测量其浓度.基于气相色谱仪测量的浓度,利用物料守恒原理计算水样溶解CH4的原始浓度[33].基于野外采样获取的水体溶存CH4浓度,本研究利用水-气界面扩散模型计算CH4扩散通量(F m,mmol·m-2·d-1):

  • Fm=0.001×k×Cw-Ceq,
    (1)
  • 式中:0.001是单位转换系数;C w为水体CH4溶存浓度(nmol·L-1),由顶空平衡法计算得到;C eq为特定温度下大气CH4浓度与水体表面CH4气体达到平衡时的浓度(nmol·L-1);k是水-气界面CH4气体的交换系数.已有研究表明在大型湖泊中,水-气界面气体交换系数k值主要受风力驱动[34],因此本研究基于观测的风速计算水-气界面CH4气体交换速率,计算公式[35]

  • k=0.24×2.07+0.215U101.7×Sc/600-n,
    (2)
  • 式中:0.24是单位转换系数;S c是无量纲CH4气体施密特数,与水温相关;n是与风速相关的系数;U10是10m高度的风速 (m·s-1),根据粗糙度和仪器的观测高度计算得到[32],同步风速数据由太湖中尺度通量观测网络提供[28].计算得到CH4扩散通量为正值时表征水体是向大气CH4的排放源.

  • 1.3 辅助观测

  • 野外调查期间用YSI 6600多参数水质分析仪原位监测采样点位的水温、溶解氧(DO)和电导率(Spc)等指标,同时测量每个点位的水深.另外,采集水样用于营养盐和叶绿素a (Chl-a)的测定.本研究测定的水体营养盐主要包括总氮(TN)、铵态氮(NH+4-N)、硝态氮(NO-3-N)和总磷(TP).TN测定采用过硫酸钾消解紫外分光光度法,TP测定采用过硫酸钾消解钼酸铵分光光度法.水样经GF/F膜过滤后用于NH+4-N和NO-3-N测定,其中,NH+4-N浓度测定采用纳氏试剂光度法,NO-3-N浓度采用流动分析仪(荷兰Skalar SAN++型流动分析仪)测定.Chl-a采用90%(体积分数)热乙醇萃取分光光度法测量.本研究中的营养盐和Chl-a等数据由中国科学院太湖湖泊生态系统研究站提供.此外,通过中国气象数据共享网(http://cdc.nmic.cn)收集和整理太湖上游区域两个气象站(图1)的降雨等气象数据.

  • 1.4 数据分析

  • 分湖区(梅梁湾、西北湖区、贡湖湾、湖心区域和西南湖区)统计分析观测数据以及计算得到的数据,采用相关分析(Pearson correlations)方法分析不同指标在空间尺度和时间尺度上的相关性.基于观测的数据以及计算得到的数据,采用One-way ANONA分析比较不同数据组间的差异,使用LSD(Least-Significant Difference)方法检验其差异是否显著(P=0.05).

  • 2 结果

  • 2.1 DOC空间变化及其影响因子

  • 图2表征太湖藻型湖区DOC的空间变化特征.由图2可知,DOC具有强烈的空间变化特征,不同点位年均DOC质量浓度介于3.19mg/L与5.08mg/L之间,均值为4.15mg/L.在湖区尺度上,西北湖区DOC质量浓度最高(4.85mg/L),其次为梅梁湾湖区(4.50mg/L)和湖心区域(4.27mg/L),贡湖湾和西南湖区DOC则相对较低,其质量浓度分别为3.60mg/L和3.50mg/L.统计分析表明,贡湖湾和西南湖区DOC质量浓度显著(P <0.01)低于其他湖区.值得注意的是,西北湖区在河流入湖口处DOC较高,但是贡湖湾和西南湖区河流入湖口的DOC较低,其中年均DOC质量浓度最低值(3.19mg/L)出现在贡湖湾河流入湖口处.因藻类大量增殖和蓝藻水华暴发导致太湖藻型湖区具有较高的初级生产力,Chl-a质量浓度高且具有显著的空间异质性.结果分析表明,太湖藻型湖区DOC的空间变化与Chl-a质量浓度呈显著正相关关系(图3a),Chl-a控制57%的DOC质量浓度空间变化(R2=0.57,P <0.01).太湖藻型湖区另一特点就是营养盐富集,氮磷负荷高,相关性分析表明DOC的空间变化也和总氮(TN)紧密相关(R2=0.43,P <0.01;图3b).逐步多元统计分析发现,Chl-a和电导率(Spc)共同控制77%的DOC空间变化(R2=0.77,P <0.01).相关性分析是判断因果关系和驱动力的前提,以上分析结果表明Chl-a和TN等是驱动DOC空间变化的主要环境变量.

  • 图2 观测期间DOC空间变化

  • Fig.2 Spatial variation of DOC during sampling period

  • 2.2 DOC的时间变化及其影响因子

  • 连续采样表明在月尺度上DOC质量浓度波动明显.其中,西北湖区DOC质量浓度介于3.22mg/L与6.47mg/L之间,梅梁湾DOC质量浓度介于3.28mg/L与5.96mg/L之间,贡湖湾DOC质量浓度介于1.50mg/L与5.02mg/L之间,湖心区域DOC质量浓度介于3.06mg/L与5.52mg/L之间.富营养湖泊蓝藻生消过程可产生大量DOC,影响水体DOC变化[8].本研究表明太湖西北湖区、梅梁湾和贡湖湾的DOC季节波动与表征蓝藻生物量的Chl-a质量浓度无直接关联(图4).但是,在受外源负荷输入影响较小的湖心区域,其DOC质量浓度月变化与Chl-a呈显著正相关关系(R2=0.60,P <0.01;图4d),表明蓝藻暴发是其DOC时间变化的主要驱动因子.

  • 太湖流域降雨充沛,大量降雨不仅补充了太湖水资源,同时也携带了大量外源负荷入湖[36].西北湖区和梅梁湾是太湖上游地区的主要汇水区,其DOC质量浓度的季节波动与降雨量紧密相连(图5),尤其是在西北湖区,降雨量可解释其67%的DOC变化(R2=0.67,P <0.01).但是在贡湖湾和湖心区域,DOC的季节波动与降雨量无直接联系(图5).值得注意的是,在半封闭的富营养化梅梁湾,降雨量与TN、TP和Chl-a共同控制95%的DOC月际变化(R2=0.95,P <0.05).

  • 2.3 CH4通量空间变化影响因子

  • 湖泊水-气界面CH4扩散通量作为碳在水体流动转移的结果,其变化特征受多种环境变量驱动.前期研究表明太湖CH4扩散通量具有极为显著的空间变化特征,且藻型湖区是太湖CH4的“热点”排放区域.本研究表明太湖藻型湖区CH4扩散通量在空间尺度上介于0.006mmol·m-2·d-1与0.254mmol·m-2·d-1之间,均值为0.083mmol·m-2·d-1.结果分析表明CH4扩散通量的空间变化与DOC和Chl-a具有显著正相关关系(图5),表明藻型湖区蓝藻暴发和DOC富集对CH4产生和排放有显著影响.逐步多元统计分析发现DOC与水深共同控制59%的CH4扩散通量的空间变化(R 2=0.59,P <0.01).

  • 图3 年均DOC质量浓度与Chl-a(a)和TN(b)的空间相关性

  • Fig.3 Spatial correlations of annual mean DOC concentration against (a) Chl-a and (b) TN

  • 图4 月尺度西北湖区(a)、梅梁湾(b)、贡湖湾(c)和湖心区域(d)DOC与Chl-a的相关性

  • Fig.4 Correlations between monthly DOC and Chl-a in (a) Northwest Zone,(b) Meiliang Bay,(c) Gonghu Bay,and (d) Central Zone

  • 2.4 CH4通量时间变化及其影响因素

  • 湖泊等水体CH4扩散通量往往具有极为显著的时间变化特征,明晰CH4通量时间变化的影响因素对深入掌握CH4循环过程及预测其未来变化尤为重要.逐月观测数据表明西北湖区、梅梁湾、贡湖湾和湖心区域CH4扩散通量变化明显(图6).其中,西北湖区CH4扩散通量最高为0.506mmol·m-2·d-1,出现在11月,但最低值仅为0.050mmol·m-2·d-1,出现在12月;贡湖湾CH4通量表现出双峰特点,在6月和9月分别出现CH4排放通量峰值;梅梁湾和湖心两个湖区CH4扩散通量表现出显著的季节变化特征,即夏季CH4扩散排放通量最高,冬季最低.

  • 相关性分析表明,水温和溶解氧是梅梁湾和湖心区域CH4通量时间变化的重要影响因子(表1).此外,梅梁湾CH4通量时间变化与TP和Chl-a呈显著正相关关系,与NO-3-N呈显著负相关关系.贡湖湾CH4通量在时间尺度上与水温呈显著正相关关系,与TN呈显著负相关关系.在湖心区域,CH4通量与NH+4-N和TN呈显著负相关关系.值得注意的是,未发现环境因子与西北湖区CH4通量具有显著的相关性,且四个湖区CH4通量的时间变化均与DOC无直接关联性.

  • 3 讨论

  • 3.1 DOC来源解析

  • DOC是维持湖泊生态系统正常运转的关键物质,调节和影响着湖泊生态系统的结构和功能[7].湖泊水体DOC时空异质性强,富营养化湖泊一般具有较高的DOC含量[12-13],且湖泊DOC时空变化在很大程度上受其来源的影响,因此辨识其DOC来源对全面理解湖泊碳循环和探究湖泊碳的生物地球化学过程具有重要意义.湖泊等水体DOC来源主要包括外源输入和内源产生,其中外源输入受流域初级生产力和分解速率的共同控制,且与流域来水量密切相关[13,37-38].流域降雨是太湖水量主要补给方式,本研究发现西北湖区和梅梁湾DOC季节变化与降雨量呈现显著正相关关系(图5),表明外源输入驱动着这两个湖区DOC的时间变化.另外在空间尺度上,DOC与TN也具有显著的正相关关系(图2),考虑到太湖氮负荷主要来自于外源输送[39-40],且流域碳氮输入具有共变特征[29,41],这也从另一方面说明外源输送是太湖藻型湖区DOC的主要来源方式.

  • 图5 月尺度西北湖区(a)、梅梁湾(b)、贡湖湾(c)和湖心区域(d)DOC浓度与降雨的相关性 (降雨量为采样前5日的雨量总和)

  • Fig.5 Correlations between monthly DOC and precipitation in (a) Northwest Zone, (b) Meiliang Bay,(c) Gonghu Bay,and (d) Central Zone

  • 图6 CH4排放通量与DOC(a)和Chl-a(b)的空间相关性

  • Fig.6 Spatial correlations of DOC concentration against (a) DOC and (b) Chl-a

  • 图7 不同湖区CH4扩散通量时间变化

  • Fig.7 Temporal variations of CH4 diffusion flux at Northwest Zone,Meiliang Bay,Gonghu By,and Central Zone

  • 表1 不同湖区CH4通量与环境变量的时间相关性

  • Table1 Temporal correlations between CH4 flux and environmental variables at the four zones

  • 注:**表示相关性在0.01水平上显著;*表示相关性在0.05水平上显著.

  • 富营养化湖泊蓝藻暴发也与DOC浓度变化密切相关,是DOC的主要内源产生途径[8].相关研究发现湖泊DOC来源存在季节性变化规律,蓝藻暴发期间DOC产生速率高,且主要来源是内源性碳[8,42-43].本研究发现DOC的空间变化与Chl-a呈显著正相关关系,表明蓝藻暴发可显著增加DOC浓度.但是,在严重富营养化的西北湖区和富营养化的梅梁湾湖区,DOC浓度的季节变化与Chl-a无直接关联性,这与之前相关研究有所不同[8-9].考虑到西北湖区和梅梁湾接收了大量的流域外源负荷,高强度的外源输入可能显著增加水体DOC的外源比例[37],致使内源性碳对DOC季节变化的影响相对较低.值得注意的是,在受外源输入影响较低的湖心区域,其DOC的季节变化主要受Chl-a驱动(图4和图5),表明内源性碳是其DOC主要来源途径.因此,太湖水体不同来源DOC的贡献比例在不同湖区之间有所不同.

  • 湖泊等水体DOC含量受到多重因素的综合影响,不同水体不同因素的影响程度不同.早期研究表明贫营养化湖泊因其生产力较低,DOC来源以外源性为主[10],本研究表明在富营养化湖区,尤其是在西北湖区,DOC季节波动受流域降雨量驱动(图5),表明外源输入对DOC含量变化影响显著,即在藻型高产生力湖泊中,外源性DOC的贡献也可能较显著.值得注意的是,尽管西南湖区和贡湖湾也连通太湖的主要入湖河道(图1),但其DOC浓度受外源输入影响相对较低(图5),其主要原因可能源于流域特征[37-38].与西北湖区和梅梁湾相比,西南湖区和贡湖湾上游区域受人为干扰强度相对较低,其入湖河流DOC和污染物浓度较低[44],致使外源性碳贡献不显著.此外,西南湖区和贡湖湾蓝藻生物量相对较低[29],进一步致使其内DOC含量显著(P <0.01)低于其他湖区DOC含量(图2).因此,在开展湖泊等水体DOC来源辨识研究中应考虑自然和人为等多种因素的综合影响.

  • 3.2 不同湖区CH4通量的驱动因子

  • 湖泊等水-气界面CH4扩散排放构成了全球碳循环的重要环节[2],明确其CH4排放变化特征及其控制因素对完善湖泊碳循环过程的基本理论有着重要作用.基于为期一年的观测表明,太湖藻型湖区CH4扩散通量时间变化特征极为显著(图6).湖泊等水体CH4产生和排放有很强的温度依赖性[16,45],受季风气候影响,太湖水温具有强烈的季节变化特征,高水温出现在夏季,低水温出现在冬季,且不同湖区间水温无显著差异[27,46].统计分析表明水温与梅梁湾、湖心和贡湖湾CH4通量呈显著正相关关系(表1),表明水温是其CH4通量变化的关键影响因子.此外,这三个湖区CH4通量与N负荷呈显著负相关关系,考虑到不同生境下N负荷与CH4通量的关系较为复杂[15],本研究中的负相关关系可能源于在暖季CH4通量较高时,因较强的硝化和反硝化作用,水体N负荷出现低值[47].

  • 富营养化湖泊较高的蓝藻生物量被认为可显著提高CH4的排放水平[21].本研究发现仅梅梁湾的CH4扩散时间变化与Chl-a呈显著正相关关系(表1).梅梁湾是半封闭的港湾,且在蓝藻暴发的夏季因盛行风向的影响,蓝藻很容易在梅梁湾聚集,藻类繁殖和聚集为CH4产生提供有利条件,致使Chl-a和CH4通量呈显著正相关关系[48].尽管西北湖区Chl-a浓度很高,但其连接众多入湖河道(图1),入湖水量大,已有研究表明水体CH4水平与流量呈负相关关系[15,49],流量稀释效应可能“掩盖掉”Chl-a对CH4通量的直接影响作用.此外,与之前研究相同[16],本研究也发现CH4通量与DO呈显著的负相关关系(表1).值得注意的是,蓝藻暴发可提高湖泊水体DO含量[50],进而增加水体CH4的氧化消耗量,降低CH4排放量.鉴于湖泊CH4的产生和排放是一个复杂动态过程,为明晰蓝藻暴发对CH4排放的影响及其驱动机制,需考虑水体自身特性、理化性质、水动力因素和生物因素等多种因素的综合作用.

  • 3.3 DOC与CH4排放的关联性

  • 水体DOC为CH4产生提供碳源,因此与CH4排放关系密切[17,51].本研究结果表明,藻型湖泊CH4排放通量的空间变化主要受水体DOC质量浓度控制(图5),富营养化湖区DOC质量浓度较高,其CH4排放量也明显较高,这与其他研究结果相一致[22,48].例如在湖区尺度上,西北湖区DOC质量浓度最高(图2),其CH4排放量(均值0.185mmol·m-2·d-1)远高于低DOC含量的湖心(均值0.028mmol·m-2·d-1)等区域CH4排放量.富营养化湖泊藻类繁殖提高新鲜DOC供给,这部分新鲜DOC不稳定,转化周期短,可很快被微生物分解利用[8],为CH4原位产生提供基质,导致富营养化藻型湖区是CH4热点排放区域[24,52].DOC可能是蓝藻生消过程影响CH4产生和排放的主要因子,即藻类通过释放DOC促进CH4排放.同时,CH4排放往往出现在藻类衰亡释放DOC之后,而此时Chl-a已降到较低水平[24],很可能致使CH4通量与Chl-a在大部分湖区没有显著相关性(表1).此外,相关研究表明DOC的分解可进一步消耗水体中氧气,减少CH4的氧化消耗[15,23].综上所述,藻型湖泊DOC的累积有利于形成CH4排放热点.

  • DOC等有机质影响湖泊等水体CH4排放的主要作用机制是为CH4产生提供直接碳源,但这种影响可能因湖泊所处流域DOC来源途径、丰富程度和地理位置不同而呈现差异.尽管研究表明DOC增加能显著刺激水体CH4产生和排放[15,51],但本研究结果表明不同湖区CH4的时间变化均与DOC无直接关联.这可能主要是因为水体有机质的生物有效性和腐殖质组成等影响CH4产生.已有研究表明藻型湖泊溶解有机质中微生物代谢类腐殖质和类蛋白是CH4通量变化的最佳解释变量[53].由于内陆湖泊等水体有机质的组成及其生物有效性极易受到人类活动(城市化、生活排污和农业面源污染等)影响,因此研究DOC等有机质与CH4排放的关系时,不仅需要关注DOC等有机质含量与CH4产生的关系,更应该开展有机质组成与CH4产生和排放的影响[15].此外,DOC降解是藻型湖泊CH4产生的主要途径,但相关研究表明磷素有效性是控制水体DOC降解的关键因素[54].本研究也发现在富含DOC的梅梁湾,其CH4通量与TP呈现显著正相关关系,进一步表明DOC对CH4排放的影响可能受磷素等其他因子的调控.综上,DOC对湖泊CH4产生和排放的影响受到一系外部和内部因子直接和间接的综合调控,后续研究需要考虑多因素的综合控制效应,以明晰DOC与CH4排放通量之间的关联性.

  • 4 结论

  • 太湖藻型湖区DOC质量浓度均值为4.15mg/L,但具有显著的时空变化特征.受外源输送和内部蓝藻类增殖的影响,西北湖区和梅梁湾DOC含量较高,且其DOC时间变化与流域降雨量紧密相关,但在受外源输送影响较小的湖心区域,其DOC的时间变化主要受蓝藻生物量驱动.太湖藻型湖区较高的蓝藻生物量显著提高了CH4的排放通量,且DOC含量是蓝藻影响CH4产生和排放的主要因子.总体上,太湖藻型湖区DOC的累积致使其是CH4排放的热点,但DOC对CH4产生和排放的影响受湖泊内部因子和外部因子的综合调控,其潜在的控制机制和具体的关联性还需要进一步探讨.

  • 参考文献

    • [1] Tranvik L J,Downing J A,Cotner J B,et al.Lakes and reservoirs as regulators of carbon cycling and climate[J].Limnology and Oceanography,2009,54(6):2298-2314

    • [2] Bastviken D,Tranvik L J,Downing J A,et al.Freshwater methane emissions offset the continental carbon sink[J].Science,2011,331(6013):50

    • [3] Raymond P A,Hartmann J,Lauerwald R,et al.Global carbon dioxide emissions from inland waters[J].Nature,2013,503(7476):355-359

    • [4] Lapierre J-F,Guillemette F,Berggren M,et al.Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems[J].Nature Communications,2013,4(1):171-184

    • [5] Borges A V,Darchambeau F,Teodoru C R.Globally significant greenhouse-gas emissions from African inland waters[J].Nature Geoscience,2015,8(8):637-642

    • [6] Holgerson M,Raymond P.Large contribution to inland water CO2 and CH4 emissions from very small ponds[J].Nature Geoscience,2016,9(3):222-229

    • [7] Sobek S,Tranvik L J,Prairie Y T,et al.Patterns and regulation of dissolved organic carbon:an analysis of 7,500 widely distributed lakes[J].Limnology and Oceanography,2007,52(3):1208-1219

    • [8] 叶琳琳,孔繁翔,史小丽,等.富营养化湖泊溶解性有机碳生物可利用性研究进展[J].生态学报,2014,34(4):779-788YE Linlin,KONG Fanxiang,SHI Xiaoli,et al.The bioavailability of dissolved organic carbon in the eutrophic lakes[J].Acta Ecologica Sinica,2014,34(4):779-788

    • [9] 杨平,唐晨,陆苗慧,等.亚热带河口区水库DOC和DIC浓度时空变化特征[J].湖泊科学,2021,33(4):1123-1137YANG Ping,TANG Chen,LU Miaohui,et al.Spatialtemporal variations in water dissolved organic carbon and dissolved inorganic carbon concentrations in Wenwusha reservoir in subtropical estuary,southwest China[J].Journal of Lake Sciences,2021,33(4):1123-1137

    • [10] Carpenter S R,Cole J J,Pace M L,et al.Ecosystem subsidies:terrestrial support of aquatic food webs from 13C addition to contrasting lakes[J].Ecology,2005,86(10):2737-2750

    • [11] Baines S B,Pace M L.The production of dissolved organic matter by phytoplankton and its importance to bacteria:patterns across marine and freshwater systems[J].Limnology and Oceanography,1991,36(6):1078-1090

    • [12] Pacheco F S,Roland F,Downing J A.Eutrophication reverses whole-lake carbon budgets[J].Inland Waters,2014,4(1):41-48

    • [13] Song K S,Wen Z D,Shang Y X,et al.Quantification of dissolved organic carbon(DOC)storage in lakes and reservoirs of mainland China[J].Journal of Environmental Management,2018,217:391-402

    • [14] Ho J C,Michalak A M,Pahlevan N,et al.Widespread global increase in intense lake phytoplankton blooms since the 1980s[J].Nature,2019,574(7780):667-670

    • [15] 王晓锋,袁兴中,陈槐,等.河流CO2与CH4排放研究进展[J].环境科学,2017,38(12):5352-5366WANG Xiaofeng,YUAN Xingzhong,CHEN Huai,et al.Review of CO2 and CH4 emissions from rivers[J].Environmental Science,2017,38(12):5352-5366

    • [16] 杨平,仝川.淡水水生生态系统温室气体排放的主要途径及影响因素研究进展[J].生态学报,2015,35(20):6868-6880YANG Ping,TONG Chuan.Emission paths and measurement methods for greenhouse gas fluxes from freshwater ecosystems:a review[J].Acta Ecologica Sinica,2015,35(20):6868-6880

    • [17] Stanley E H,Casson N J,Christel S T,et al.The ecology of methane in streams and rivers:patterns,controls,and global significance[J].Ecological Monographs,2016,86(2):146-171

    • [18] Zhang L W,Xia X H,Liu S D,et al.Significant methane ebullition from alpine permafrost rivers on the east Qinghai-Tibet Plateau[J].Nature Geoscience,2020,13(5):349-354

    • [19] 商东耀,肖启涛,胡正华,等.富营养化湖区CH4排放特征及其影响因素[J].环境科学,2018,39(11):5227-5236SHANG Dongyao,XIAO Qitao,HU Zhenghua,et al.CH4 emissions characteristics and its influencing factors in an eutrophic lake[J].Environmental Science,2018,39(11):5227-5236

    • [20] 吴庆龙,邢鹏,李化炳,等.草藻型稳态转换对湖泊微生物结构及其碳循环功能的影响[J].微生物学通报,2013,40(1):87-97WU Qinglong,XING Peng,LI Huabing,et al.Impacts of regime shift between phytoplankton and macrophyte on the microbial community structure and its carbon cycling in lakes[J].Microbiology China,2013,40(1):87-97

    • [21] Beaulieu J J,Del Sontro T,Downing J A.Eutrophication will increase methane emissions from lakes and impoundments during the 21st century[J].Nature Communications,2019,10(1):171-184

    • [22] 张佩,王晓锋,袁兴中.中国淡水生态系统甲烷排放基本特征及研究进展[J].中国环境科学,2020,40(8):3567-3579ZHANG Pei,WANG Xiaofeng,YUAN Xingzhong.General characteristics and research progress of methane emissions from freshwater ecosystems in China[J].China Environmental Science,2020,40(8):3567-3579

    • [23] Huttunen J T,Alm J,Liikanen A,et al.Fluxes of methane,carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions[J].Chemosphere,2003,52(3):609-621

    • [24] 刘艺,许浩廉,毛羽丰,等.铜绿微囊藻衰亡过程中产甲烷动态及关键影响因子[J].土木与环境工程学报,2019,41(5):132-140LIU Yi,XU Haolian,MAO Yufeng,et al.Methane-producing dynamics and key influencing factors during the decay of Microcystis aeruginosa[J].Journal of Civil and Environmental Engineering,2019,41(5):132-140

    • [25] 朱广伟,秦伯强,张运林,等.2005—2017年北部太湖水体叶绿素a和营养盐变化及影响因素[J].湖泊科学,2018,30(2):279-295ZHU Guangwei,QIN Boqiang,ZHANG Yunlin,et al.Variations and driving factors of nutrients and chlorophyll-a concentrations in northern region of Lake Taihu,China,2005-2017[J].Journal of Lake Sciences,2018,30(2):279-295

    • [26] Shi K,Zhang Y L,Zhang Y B,et al.Phenology of phytoplankton blooms in a trophic lake observed from long-term MODIS data[J].Environmental Science & Technology,2019,53(5):2324-2331

    • [27] Xiao Q T,Zhang M,Hu Z H,et al.Spatial variations of methane emission in a large shallow eutrophic lake in subtropical climate[J].Journal of Geophysical Research:Biogeosciences,2017,122(7):1597-1614

    • [28] Lee X H,Liu S D,Xiao W,et al.The Taihu eddy flux network:an observational program on energy,water,and greenhouse gas fluxes of a large freshwater lake[J].Bulletin of the American Meteorological Society,2014,95(10):1583-1594

    • [29] Xiao Q T,Xu X F,Duan H T,et al.Eutrophic Lake Taihu as a significant CO2 source during 2000-2015[J].Water Research,2020,170:115331

    • [30] 肖启涛.太湖CH4通量的空间格局及影响因子分析[D].南京:南京信息工程大学,2017XIAO Qitao.Spatial pattern of CH4 flux and its impact factors analysis in Lake Taihu [D].Nanjing:Nanjing University of Information Science & Technology,2017

    • [31] Qi T C,Xiao Q T,Cao Z G,et al.Satellite estimation of dissolved carbon dioxide concentrations in China's Lake Taihu[J].Environmental Science & Technology,2020,54(21):13709-13718

    • [32] 肖启涛.太湖水-气界面温室气体(CO2、CH4、N2O)通量研究[D].南京:南京信息工程大学,2014XIAO Qitao.Study on greenhouse gases(CO2,CH4,and N2O)fluxes of water-air interface in Lake Taihu [D].Nanjing:Nanjing University of Information Science & Technology,2014

    • [33] 肖启涛,胡正华,James Deng,等.杀菌剂对湖泊水体温室气体浓度分析的影响[J].环境科学,2014,35(1):356-364XIAO Qitao,HU Zhenghua,DENG James,et al.Effects of antiseptic on the analysis of greenhouse gases concentrations in lake water[J].Environmental Science,2014,35(1):356-364

    • [34] 肖启涛,张弥,胡正华,等.基于不同模型的大型湖泊水-气界面气体传输速率估算[J].湖泊科学,2018,30(3):790-801XIAO Qitao,ZHANG Mi,HU Zhenghua,et al.Estimate of gas transfer velocity between water-air interface in a large lake based on different models:a case study of Lake Taihu [J].Journal of Lake Sciences,2018,30(3):790-801

    • [35] Cole J J,Caraco N F.Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6[J].Limnology and Oceanography,1998,43(4):647-656

    • [36] 秦伯强.浅水湖泊湖沼学与太湖富营养化控制研究[J].湖泊科学,2020,32(5):1229-1243QIN Boqiang.Shallow lake limnology and control of eutrophication in Lake Taihu[J].Journal of Lake Sciences,2020,32(5):1229-1243

    • [37] 周苗,李思亮,丁虎,等.地表流域有机碳地球化学研究进展[J].生态学杂志,2018,37(1):255-264ZHOU Miao,LI Siliang,DING Hu,et al.Advances in study on organic carbon characteristics in the riverine systems[J].Chinese Journal of Ecology,2018,37(1):255-264

    • [38] 赖曼婷,钟君,王万发,等.白龙江溶解有机碳的空间分布、来源及其控制因素探究[J].地球与环境,2021,49(3):227-237LAI Manting,ZHONG Jun,WANG Wanfa,et al.Spatial distribution,sources and controlling factors of dissolved organic carbon of Bailong River[J].Earth and Environment,2021,49(3):227-237

    • [39] Qin B Q,Xu P Z,Wu Q L,et al.Environmental issues of Lake Taihu,China[J].Hydrobiologia,2007,581(1):3-14

    • [40] Xiao Q T,Xu X F,Zhang M,et al.Coregulation of nitrous oxide emissions by nitrogen and temperature in China's third largest freshwater lake(Lake Taihu)[J].Limnology and Oceanography,2019,64(3):1070-1086

    • [41] Perga M-E,Maberly S C,Jenny J-P,et al.A century of human-driven changes in the carbon dioxide concentration of lakes[J].Global Biogeochemical Cycles,2016,30(2):93-104

    • [42] Sugiyama Y,Anegawa A,Kumagai T,et al.Distribution of dissolved organic carbon in lakes of different trophic types[J].Limnology,2004,5(3):165-176

    • [43] Xiao Q T,Duan H T,Qi T C,et al.Environmental investments decreased partial pressure of CO2 in a small eutrophic urban lake:evidence from long-term measurements[J].Environmental Pollution,2020,263:114433

    • [44] 燕姝雯,余辉,张璐璐,等.2009年环太湖入出湖河流水量及污染负荷通量[J].湖泊科学,2011,23(6):855-862YAN Shuwen,YU hui,ZHANG Lulu,et al.Water quantity and pollutant fluxes of inflow and outflow rivers of Lake Taihu,2009[J].Journal of Lake Sciences,2011,23(6):855-862

    • [45] Yvon-Durocher G,Allen A P,Bastviken D,et al.Methane fluxes show consistent temperature dependence across microbial to ecosystem scales[J].Nature,2014,507(7493):488-491

    • [46] 肖启涛,胡正华,张弥,等.水力调控对湖泊甲烷扩散通量的影响[J].湖泊科学,2021,33(2):561-570XIAO Qitao,HU Zhenghua,ZHANG Mi,et al.Effects of water diversion on methane diffusion flux across the water-air interface in lakes[J].Journal of Lake Sciences,2021,33(2):561-570

    • [47] Xu H,Paerl H W,Qin B Q,et al.Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu,China[J].Limnology and Oceanography,2010,55(1):420-432

    • [48] Wen Z D,Song K S,Zhao Y,et al.Carbon dioxide and methane supersaturation in lakes of semi-humid/semi-arid region,northeastern China[J].Atmospheric Environment,2016,138:65-73

    • [49] Kone Y J M,Abril G,Delille B,et al.Seasonal variability of methane in the rivers and lagoons of Ivory Coast(West Africa)[J].Biogeochemistry,2010,100(1/2/3):21-37

    • [50] Jane S F,Hansen G J A,Kraemer B M,et al.Widespread deoxygenation of temperate lakes[J].Nature,2021,594(7861):66-70

    • [51] Crawford J T,Stanley E H.Controls on methane concentrations and fluxes in streams draining human-dominated landscapes[J].Ecological Applications,2016,26(5):1581-1591

    • [52] West W E,Coloso J J,Jones S E.Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment[J].Freshwater Biology,2012,57(5):949-955

    • [53] 荀凡,杜先,陈新芳,等.秋季连续打捞蓝藻对水-气界面温室气体通量的影响[J].湖泊科学,2020,32(6):1707-1722XUN Fan,DU Xian,CHEN Xinfang,et al.Effects of continuous cyanobacterial salvaging on greenhouse gas flux on water-air interface in autumn[J].Journal of Lake Sciences,2020,32(6):1707-1722

    • [54] Mao R,Chen H M,Li S Y.Phosphorus availability as a primary control of dissolved organic carbon biodegradation in the tributaries of the Yangtze River in the Three Gorges Reservoir region[J].Science of the Total Environment,2017,574:1472-1476

  • 参考文献

    • [1] Tranvik L J,Downing J A,Cotner J B,et al.Lakes and reservoirs as regulators of carbon cycling and climate[J].Limnology and Oceanography,2009,54(6):2298-2314

    • [2] Bastviken D,Tranvik L J,Downing J A,et al.Freshwater methane emissions offset the continental carbon sink[J].Science,2011,331(6013):50

    • [3] Raymond P A,Hartmann J,Lauerwald R,et al.Global carbon dioxide emissions from inland waters[J].Nature,2013,503(7476):355-359

    • [4] Lapierre J-F,Guillemette F,Berggren M,et al.Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems[J].Nature Communications,2013,4(1):171-184

    • [5] Borges A V,Darchambeau F,Teodoru C R.Globally significant greenhouse-gas emissions from African inland waters[J].Nature Geoscience,2015,8(8):637-642

    • [6] Holgerson M,Raymond P.Large contribution to inland water CO2 and CH4 emissions from very small ponds[J].Nature Geoscience,2016,9(3):222-229

    • [7] Sobek S,Tranvik L J,Prairie Y T,et al.Patterns and regulation of dissolved organic carbon:an analysis of 7,500 widely distributed lakes[J].Limnology and Oceanography,2007,52(3):1208-1219

    • [8] 叶琳琳,孔繁翔,史小丽,等.富营养化湖泊溶解性有机碳生物可利用性研究进展[J].生态学报,2014,34(4):779-788YE Linlin,KONG Fanxiang,SHI Xiaoli,et al.The bioavailability of dissolved organic carbon in the eutrophic lakes[J].Acta Ecologica Sinica,2014,34(4):779-788

    • [9] 杨平,唐晨,陆苗慧,等.亚热带河口区水库DOC和DIC浓度时空变化特征[J].湖泊科学,2021,33(4):1123-1137YANG Ping,TANG Chen,LU Miaohui,et al.Spatialtemporal variations in water dissolved organic carbon and dissolved inorganic carbon concentrations in Wenwusha reservoir in subtropical estuary,southwest China[J].Journal of Lake Sciences,2021,33(4):1123-1137

    • [10] Carpenter S R,Cole J J,Pace M L,et al.Ecosystem subsidies:terrestrial support of aquatic food webs from 13C addition to contrasting lakes[J].Ecology,2005,86(10):2737-2750

    • [11] Baines S B,Pace M L.The production of dissolved organic matter by phytoplankton and its importance to bacteria:patterns across marine and freshwater systems[J].Limnology and Oceanography,1991,36(6):1078-1090

    • [12] Pacheco F S,Roland F,Downing J A.Eutrophication reverses whole-lake carbon budgets[J].Inland Waters,2014,4(1):41-48

    • [13] Song K S,Wen Z D,Shang Y X,et al.Quantification of dissolved organic carbon(DOC)storage in lakes and reservoirs of mainland China[J].Journal of Environmental Management,2018,217:391-402

    • [14] Ho J C,Michalak A M,Pahlevan N,et al.Widespread global increase in intense lake phytoplankton blooms since the 1980s[J].Nature,2019,574(7780):667-670

    • [15] 王晓锋,袁兴中,陈槐,等.河流CO2与CH4排放研究进展[J].环境科学,2017,38(12):5352-5366WANG Xiaofeng,YUAN Xingzhong,CHEN Huai,et al.Review of CO2 and CH4 emissions from rivers[J].Environmental Science,2017,38(12):5352-5366

    • [16] 杨平,仝川.淡水水生生态系统温室气体排放的主要途径及影响因素研究进展[J].生态学报,2015,35(20):6868-6880YANG Ping,TONG Chuan.Emission paths and measurement methods for greenhouse gas fluxes from freshwater ecosystems:a review[J].Acta Ecologica Sinica,2015,35(20):6868-6880

    • [17] Stanley E H,Casson N J,Christel S T,et al.The ecology of methane in streams and rivers:patterns,controls,and global significance[J].Ecological Monographs,2016,86(2):146-171

    • [18] Zhang L W,Xia X H,Liu S D,et al.Significant methane ebullition from alpine permafrost rivers on the east Qinghai-Tibet Plateau[J].Nature Geoscience,2020,13(5):349-354

    • [19] 商东耀,肖启涛,胡正华,等.富营养化湖区CH4排放特征及其影响因素[J].环境科学,2018,39(11):5227-5236SHANG Dongyao,XIAO Qitao,HU Zhenghua,et al.CH4 emissions characteristics and its influencing factors in an eutrophic lake[J].Environmental Science,2018,39(11):5227-5236

    • [20] 吴庆龙,邢鹏,李化炳,等.草藻型稳态转换对湖泊微生物结构及其碳循环功能的影响[J].微生物学通报,2013,40(1):87-97WU Qinglong,XING Peng,LI Huabing,et al.Impacts of regime shift between phytoplankton and macrophyte on the microbial community structure and its carbon cycling in lakes[J].Microbiology China,2013,40(1):87-97

    • [21] Beaulieu J J,Del Sontro T,Downing J A.Eutrophication will increase methane emissions from lakes and impoundments during the 21st century[J].Nature Communications,2019,10(1):171-184

    • [22] 张佩,王晓锋,袁兴中.中国淡水生态系统甲烷排放基本特征及研究进展[J].中国环境科学,2020,40(8):3567-3579ZHANG Pei,WANG Xiaofeng,YUAN Xingzhong.General characteristics and research progress of methane emissions from freshwater ecosystems in China[J].China Environmental Science,2020,40(8):3567-3579

    • [23] Huttunen J T,Alm J,Liikanen A,et al.Fluxes of methane,carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions[J].Chemosphere,2003,52(3):609-621

    • [24] 刘艺,许浩廉,毛羽丰,等.铜绿微囊藻衰亡过程中产甲烷动态及关键影响因子[J].土木与环境工程学报,2019,41(5):132-140LIU Yi,XU Haolian,MAO Yufeng,et al.Methane-producing dynamics and key influencing factors during the decay of Microcystis aeruginosa[J].Journal of Civil and Environmental Engineering,2019,41(5):132-140

    • [25] 朱广伟,秦伯强,张运林,等.2005—2017年北部太湖水体叶绿素a和营养盐变化及影响因素[J].湖泊科学,2018,30(2):279-295ZHU Guangwei,QIN Boqiang,ZHANG Yunlin,et al.Variations and driving factors of nutrients and chlorophyll-a concentrations in northern region of Lake Taihu,China,2005-2017[J].Journal of Lake Sciences,2018,30(2):279-295

    • [26] Shi K,Zhang Y L,Zhang Y B,et al.Phenology of phytoplankton blooms in a trophic lake observed from long-term MODIS data[J].Environmental Science & Technology,2019,53(5):2324-2331

    • [27] Xiao Q T,Zhang M,Hu Z H,et al.Spatial variations of methane emission in a large shallow eutrophic lake in subtropical climate[J].Journal of Geophysical Research:Biogeosciences,2017,122(7):1597-1614

    • [28] Lee X H,Liu S D,Xiao W,et al.The Taihu eddy flux network:an observational program on energy,water,and greenhouse gas fluxes of a large freshwater lake[J].Bulletin of the American Meteorological Society,2014,95(10):1583-1594

    • [29] Xiao Q T,Xu X F,Duan H T,et al.Eutrophic Lake Taihu as a significant CO2 source during 2000-2015[J].Water Research,2020,170:115331

    • [30] 肖启涛.太湖CH4通量的空间格局及影响因子分析[D].南京:南京信息工程大学,2017XIAO Qitao.Spatial pattern of CH4 flux and its impact factors analysis in Lake Taihu [D].Nanjing:Nanjing University of Information Science & Technology,2017

    • [31] Qi T C,Xiao Q T,Cao Z G,et al.Satellite estimation of dissolved carbon dioxide concentrations in China's Lake Taihu[J].Environmental Science & Technology,2020,54(21):13709-13718

    • [32] 肖启涛.太湖水-气界面温室气体(CO2、CH4、N2O)通量研究[D].南京:南京信息工程大学,2014XIAO Qitao.Study on greenhouse gases(CO2,CH4,and N2O)fluxes of water-air interface in Lake Taihu [D].Nanjing:Nanjing University of Information Science & Technology,2014

    • [33] 肖启涛,胡正华,James Deng,等.杀菌剂对湖泊水体温室气体浓度分析的影响[J].环境科学,2014,35(1):356-364XIAO Qitao,HU Zhenghua,DENG James,et al.Effects of antiseptic on the analysis of greenhouse gases concentrations in lake water[J].Environmental Science,2014,35(1):356-364

    • [34] 肖启涛,张弥,胡正华,等.基于不同模型的大型湖泊水-气界面气体传输速率估算[J].湖泊科学,2018,30(3):790-801XIAO Qitao,ZHANG Mi,HU Zhenghua,et al.Estimate of gas transfer velocity between water-air interface in a large lake based on different models:a case study of Lake Taihu [J].Journal of Lake Sciences,2018,30(3):790-801

    • [35] Cole J J,Caraco N F.Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6[J].Limnology and Oceanography,1998,43(4):647-656

    • [36] 秦伯强.浅水湖泊湖沼学与太湖富营养化控制研究[J].湖泊科学,2020,32(5):1229-1243QIN Boqiang.Shallow lake limnology and control of eutrophication in Lake Taihu[J].Journal of Lake Sciences,2020,32(5):1229-1243

    • [37] 周苗,李思亮,丁虎,等.地表流域有机碳地球化学研究进展[J].生态学杂志,2018,37(1):255-264ZHOU Miao,LI Siliang,DING Hu,et al.Advances in study on organic carbon characteristics in the riverine systems[J].Chinese Journal of Ecology,2018,37(1):255-264

    • [38] 赖曼婷,钟君,王万发,等.白龙江溶解有机碳的空间分布、来源及其控制因素探究[J].地球与环境,2021,49(3):227-237LAI Manting,ZHONG Jun,WANG Wanfa,et al.Spatial distribution,sources and controlling factors of dissolved organic carbon of Bailong River[J].Earth and Environment,2021,49(3):227-237

    • [39] Qin B Q,Xu P Z,Wu Q L,et al.Environmental issues of Lake Taihu,China[J].Hydrobiologia,2007,581(1):3-14

    • [40] Xiao Q T,Xu X F,Zhang M,et al.Coregulation of nitrous oxide emissions by nitrogen and temperature in China's third largest freshwater lake(Lake Taihu)[J].Limnology and Oceanography,2019,64(3):1070-1086

    • [41] Perga M-E,Maberly S C,Jenny J-P,et al.A century of human-driven changes in the carbon dioxide concentration of lakes[J].Global Biogeochemical Cycles,2016,30(2):93-104

    • [42] Sugiyama Y,Anegawa A,Kumagai T,et al.Distribution of dissolved organic carbon in lakes of different trophic types[J].Limnology,2004,5(3):165-176

    • [43] Xiao Q T,Duan H T,Qi T C,et al.Environmental investments decreased partial pressure of CO2 in a small eutrophic urban lake:evidence from long-term measurements[J].Environmental Pollution,2020,263:114433

    • [44] 燕姝雯,余辉,张璐璐,等.2009年环太湖入出湖河流水量及污染负荷通量[J].湖泊科学,2011,23(6):855-862YAN Shuwen,YU hui,ZHANG Lulu,et al.Water quantity and pollutant fluxes of inflow and outflow rivers of Lake Taihu,2009[J].Journal of Lake Sciences,2011,23(6):855-862

    • [45] Yvon-Durocher G,Allen A P,Bastviken D,et al.Methane fluxes show consistent temperature dependence across microbial to ecosystem scales[J].Nature,2014,507(7493):488-491

    • [46] 肖启涛,胡正华,张弥,等.水力调控对湖泊甲烷扩散通量的影响[J].湖泊科学,2021,33(2):561-570XIAO Qitao,HU Zhenghua,ZHANG Mi,et al.Effects of water diversion on methane diffusion flux across the water-air interface in lakes[J].Journal of Lake Sciences,2021,33(2):561-570

    • [47] Xu H,Paerl H W,Qin B Q,et al.Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu,China[J].Limnology and Oceanography,2010,55(1):420-432

    • [48] Wen Z D,Song K S,Zhao Y,et al.Carbon dioxide and methane supersaturation in lakes of semi-humid/semi-arid region,northeastern China[J].Atmospheric Environment,2016,138:65-73

    • [49] Kone Y J M,Abril G,Delille B,et al.Seasonal variability of methane in the rivers and lagoons of Ivory Coast(West Africa)[J].Biogeochemistry,2010,100(1/2/3):21-37

    • [50] Jane S F,Hansen G J A,Kraemer B M,et al.Widespread deoxygenation of temperate lakes[J].Nature,2021,594(7861):66-70

    • [51] Crawford J T,Stanley E H.Controls on methane concentrations and fluxes in streams draining human-dominated landscapes[J].Ecological Applications,2016,26(5):1581-1591

    • [52] West W E,Coloso J J,Jones S E.Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment[J].Freshwater Biology,2012,57(5):949-955

    • [53] 荀凡,杜先,陈新芳,等.秋季连续打捞蓝藻对水-气界面温室气体通量的影响[J].湖泊科学,2020,32(6):1707-1722XUN Fan,DU Xian,CHEN Xinfang,et al.Effects of continuous cyanobacterial salvaging on greenhouse gas flux on water-air interface in autumn[J].Journal of Lake Sciences,2020,32(6):1707-1722

    • [54] Mao R,Chen H M,Li S Y.Phosphorus availability as a primary control of dissolved organic carbon biodegradation in the tributaries of the Yangtze River in the Three Gorges Reservoir region[J].Science of the Total Environment,2017,574:1472-1476

  • 地址:江苏省南京市宁六路219号    邮编:210044

    联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

    南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司