基于复值神经网络在辐射源识别中的优势、挑战与未来趋势探讨
作者单位:

1.厦门大学;2.中国舰船研究设计中心

基金项目:

“天池英才”引进计划(2023)、庭州特聘专家引才专项(2023)


Exploration of the Advantages, Challenges, and Future Trends of Complex-Valued Neural Networks in Radiation Source Identification
Author:
Affiliation:

1.Xiamen University;2.China Ship Development and Design Center (CSDDC)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    辐射源识别在现代通信、雷达监测及电子对抗领域具有关键作用,其目标是从复杂电磁环境中快速、准确地定位与分类多种类型的辐射源,以支撑频谱管理、安全监测和战场态势感知。传统的时域、频域与时频域信号处理方法,以及依赖手工设计特征的机器学习算法,在高噪声、低信噪比和多径干扰条件下,往往难以兼顾信号幅度与相位的耦合信息。复值神经网络(Complex?Valued Neural Networks, CVNN)通过在复数域内直接对 I/Q 数据建模,实现了对幅度–相位特征的完整表征,显著提升了低SNR环境下的识别精度与抗干扰能力。本文系统梳理了 CVNN 在辐射源识别中的研究成果:首先回顾了复值卷积神经网络(CV?CNN)在时频图像特征提取与模型轻量化压缩方面的创新;随后评述了复值循环神经网络(CV?RNN)在时序特征建模与增量识别中的应用;并深入探讨了将注意力机制、自监督学习及对抗训练策略融入复值框架以强化模型泛化与鲁棒性的路径。最后,我们针对当前方法在参数初始化、训练稳定性、算力消耗及小样本迁移学习等方面的技术瓶颈,提出了面向边缘计算设备的轻量化网络设计、复数域数据增强与多模态融合等未来研究方向,以期为提升辐射源识别系统的实时性与可靠性提供指导。

    Abstract:

    Radiation source identification plays a pivotal role in modern communication, radar surveillance, and electronic warfare, aiming to rapidly and accurately localize and classify diverse emitters within complex electromagnetic environments for spectrum management, security monitoring, and battlefield situational awareness. Conventional time-domain, frequency-domain, and time–frequency signal-processing techniques, together with machine-learning algorithms based on handcrafted features, struggle to capture the coupled amplitude–phase information of signals under high noise, low signal-to-noise ratio (SNR), and multipath interference. Complex-valued neural networks (CVNNs) directly model in-phase/quadrature (I/Q) data in the complex domain, enabling complete amplitude–phase representation and markedly improving recognition accuracy and interference immunity in low-SNR settings. This paper reviews the state of the art in CVNN-based radiation source identification. First, it surveys innovations in complex-valued convolutional neural networks (CV-CNNs) for time-frequency image feature extraction and lightweight model compression. Next, it examines the use of complex-valued recurrent neural networks (CV-RNNs) for temporal feature modeling and incremental identification. The paper then explores how attention mechanisms, self-supervised learning, and adversarial training can be integrated into complex-domain frameworks to enhance model generalization and robustness. Finally, it analyzes current technical bottlenecks—including parameter initialization, training stability, computational cost, and few-shot transfer learning—and outlines future research directions such as lightweight architectures for edge devices, complex-domain data augmentation, and multimodal fusion, with the goal of improving the real-time performance and reliability of radiation source identification systems.

    参考文献
    相似文献
    引证文献
引用本文

邓训彬,孙海信,陈德喜.基于复值神经网络在辐射源识别中的优势、挑战与未来趋势探讨[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-19
  • 最后修改日期:2025-04-30
  • 录用日期:2025-05-06

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司