融合逐维高斯变异的改进白鲸优化算法及其应用
作者:
作者单位:

江苏师范大学 电气工程及自动化学院

中图分类号:

TP301.6 ??? ?

基金项目:

一种基于半鞅理论的随机型脉冲控制器设计方法的研究


Improved beluga whale optimization combining dimension-by-dimension Gaussian mutation and its application
Author:
Affiliation:

School of Electrical Engineering and Automation,Jiangsu Normal University

Fund Project:

Research on the Design Method of Random Pulse Controller Based on Semi martingale Theory

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对白鲸优化算法(BWO)全局搜索与局部开发之间不平衡、收敛速度慢、早熟、难以跳出局部最优的问题,提出一种融合逐维高斯变异的改进白鲸优化算法(IBWO)。首先,采用新的动态参数策略调整平衡因子,实现了全局搜索和局部开发较好的平衡。其次,引入current-to-rand差分变异算子提高算法的全局搜索能力。然后,结合精英领导策略,加速算法的收敛速度。最后,根据当前最优解和当前最差解的位置,对当前最优解进行逐维高斯变异,提高算法跳出局部最优的能力。为了验证改进后算法的性能,在进化计算大会(CEC)2017测试集上与另外7个元启发式算法进行比较,实验结果表明,IBWO的寻优能力优于其他算法。将IBWO应用于三个工程问题中,结果显示,IBWO在解决复杂的现实世界优化问题上有着较好的效果。

    Abstract:

    To address the imbalance between exploration and exploitation, slow convergence speed, premature convergence, and difficulty in escaping local optima in the Beluga whale optimization (BWO), an improved Beluga whale optimization combining dimension-by-dimension Gaussian mutation (IBWO) was proposed. Firstly, a dynamic parameter strategy was adopted to adjust the balance factor, achieving a better balance between exploration and exploitation. Secondly, the current-to-rand differential mutation operator was introduced to enhance the algorithm"s exploration capability. Then, by incorporating elite leadership strategies, the convergence speed of the algorithm was accelerated. Finally, based on the positions of the current optimal solution and the current worst solution, dimension-by-dimension Gaussian mutation was applied to the current optimal solution, thereby enhancing the algorithm"s ability to escape local optima. To validate the performance of the improved algorithm, it was compared with seven other metaheuristic algorithms on the Congress on evolutionary computation’s (CEC) 2017 test set, the experimental results demonstrate that IBWO exhibits superior optimization capabilities compared to other algorithms. Appling IBWO to three engineering problems, the results show that IBWO performs well in solving complex real-world optimization problems.

    参考文献
    相似文献
    引证文献
引用本文

徐烁,邹德旋,宋博,胡俊杰,张响.融合逐维高斯变异的改进白鲸优化算法及其应用[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-27
  • 最后修改日期:2025-05-13
  • 录用日期:2025-05-13

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司