0 引? 言1 本文方法2 实验结果与分析3 结论
作者单位:

南昌航空大学

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)(62473187,62365014,62401244),江西省早期职业青年人才培养项目(20244BCE2091)


Multiscale motion image deblurring based on dual-domain feature fusion
Affiliation:

Nanchang Hangkong University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)(62473187,62365014,62401244),The Early Career Young Scientists Training Project of Jiangxi Province(20244BCE2091)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对动态场景拍摄的图像存在运动模糊现象,导致图像质量下降,细节信息丢失严重的问题,本文提出了一种基于双域特征融合的多尺度运动图像去模糊方法。首先,设计了一个双域特征融合模块,采用双分支结构并行地从模糊图像中提取空间域特征和频域特征,并对双域特征进行深度融合,提高网络模型对高频细节的特征表示能力。然后,设计了一个多尺度特征聚合模块,使用跨通道自注意力聚合不同尺度模糊图像的编码特征,动态调整不同尺度特征图的权重,增强模型的鲁棒性。最后,对训练损失函数进行改进,采用结合内容损失、小波域重构损失和边缘损失的联合多尺度损失函数监督网络模型的训练,进一步提高去模糊效果。本文方法在公共数据集上进行的对比实验及消融实验结果显示,PSNR和SSIM指标分别为32.56dB和0.959,均有优于其他对比方法。实验结果表明本文方法可以有效提升去模糊的效果,并具有良好的鲁棒性。

    Abstract:

    Aiming at the problem of motion blur phenomenon in images taken from dynamic scenes, which leads to image quality degradation and serious loss of detail information, this paper proposes a multi-scale motion image deblurring method based on dual-domain feature fusion. First, a dual-domain feature fusion module is designed to extract spatial-domain features and frequency-domain features from blurred images in parallel using a two-branch structure, and the dual-domain features are deeply fused to improve the feature representation capability of the network model for high-frequency details. Then, a multi-scale feature aggregation module is designed to use cross-channel self-attention to aggregate the coded features of different scales of blurred images, and dynamically adjust the weights of different scales of feature maps to enhance the robustness of the model. Finally, the training loss function is improved, and the training of the network model is supervised using a joint multiscale loss function combining content loss, wavelet domain reconstruction loss and edge loss to further improve the deblurring effect. The results of comparison experiments and ablation experiments of this paper"s method on public datasets show that the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM metrics are 32.56 dB and 0.959, respectively, which are superior to other comparison methods. The experimental results show that this paper"s method can effectively improve the de-blurring effect and has good robustness.

    参考文献
    相似文献
    引证文献
引用本文

吴志强,熊邦书,陈九九,欧巧凤,饶智博,余磊.0 引? 言1 本文方法2 实验结果与分析3 结论[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-20
  • 最后修改日期:2025-04-07
  • 录用日期:2025-04-08

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司