基于强监督数据增强的双阶段扎把烟叶分级模型
作者:
作者单位:

1.西南交通大学信息科学与技术学院;2.广东力生智能有限公司;3.西南交通大学唐山研究院;4.西南交通大学计算机与人工智能学院

中图分类号:

TP 391

基金项目:

国家自然科学基金项目(U1936113),西南交通大学企业级纵向项目(R111624H01022)


Two-Stage Bundled Tobacco Grading Model Based on Strongly Supervised Data Augmentation
Author:
Affiliation:

1.School of Information Science and Technology, Southwest Jiaotong University;2.Guangdong Lisheng Intelligence Limited Company;3.Tangshan Institute, Southwest Jiaotong University;4.College of Computer and Artificial Intelligence, Southwest Jiaotong University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    以“扎把”作为烟叶分级单位是提高烟叶收购效率的关键策略。由于扎把烟叶间遮挡和卷曲等特性,现有主流分类方法难以准确提取其细粒度分级特征。为此,本文提出了一种基于强监督数据增强的双阶段扎把烟叶分级模型,以渐进式的方式实现扎把烟叶精确分级。首先,设计双重注意力残差网络自适应融合多维度特征来提取粗粒度信息,提出软通道注意力模块生成反映扎把烟叶关键部位的注意力图,实现对扎把烟叶的粗分级。然后,为了促进网络关注差异性细粒度特征,以粗分级注意力图为指导对全局图做强监督数据增强,获得具有辨别性特征的局部图,从而实现更精细的分级结果。本文将所提方法与当前主流的通用分类方法及细粒度分类方法在扎把烟叶数据集上进行了对比实验。实验结果表明,本文所提方法的分级准确率和macro-F1指标均达到了98.54%,显著优于对比方法,能够较好地满足工业扎把烟叶分级的实际需求。

    Abstract:

    Using "bundles" as the grading unit for tobacco leaves is a key strategy to improve the efficiency of tobacco pro-curement. Due to the occlusion and curling characteristics among bundled tobacco leaves, existing mainstream clas-sification methods struggle to accurately extract their fine-grained grading features. To address this, this paper pro-poses a two-stage bundled tobacco grading model based on strongly supervised data augmentation, achieving pre-cise grading of bundled tobacco leaves in a progressive manner. Firstly, a dual-attention residual network is de-signed to adaptively fuse multi-dimensional features for extracting coarse-grained information, and a soft channel attention module is proposed to generate attention maps reflecting key parts of the bundled tobacco leaves, thereby achieving coarse grading. Then, to encourage the network to focus on discriminative fine-grained features, strongly supervised data augmentation is performed on the global images guided by the coarse grading attention maps, ob-taining local images with distinctive features, thus achieving more refined grading results. The proposed method is compared with current mainstream general classification methods and fine-grained classification methods on a bun-dled tobacco leaf dataset. Experimental results show that the grading accuracy and macro-F1 score of the proposed method both reach 98.54%, significantly outperforming the comparison methods, and can better meet the practical needs of industrial bundled tobacco grading.

    参考文献
    [1] 陆星星. 烟叶分级[M]. 昆明:云南大学出版社, 2006年: 1-270页LU Xingxing. Grading of Tobacco Leaves [M]. Kunming: Yunnan University Press, 2006:1-270
    [2] ZHANG J, SOKHANSANJ S, WU S, et al. A trainable grading system for tobacco leaves[J]. Computers and Electronics in Agriculture, 1997, 16(3): 231-244
    [3] 李士静, 潘羲, 陈熙卓, 等. 基于高光谱信息的烟叶分级方法比较[J]. 烟草科技, 2021, 54(10): 82-91LI Shijing, PAN Xi, CHEN Xizhuo, et al. Comparison of Tobacco Leaf Grading Methods Based on Hyperspectral Information [J]. Tobacco Science Technology, 2021, 54(10): 82-91
    [4] HE Z F, CHEN G C, ZHANG Y H, et al. Pyramid feature fusion through shifted window self-attention for tobacco leaf classification[J]. Expert Systems with Applications, 2023, 230: 120601
    [5] CHEN D, ZHANG Y, HE Z, et al. Feature-reinforced dual encoder aggregation network for flue-cured tobacco grading[J]. Computers and Electronics in Agriculture, 2023, 210: 107887
    [6] Khojastehnazhand M, Roostaei M. Classification of seven Iranian wheat varieties using texture features[J]. Expert Systems with Applications, 2022, 199: 117014
    [7] 付景枝, 马悦, 宏观, 等. 基于I_CBAM-DenseNet模型的小麦发育期识别研究[J]. 南京信息工程大学学报(自然科学版), 2025, 17(1):42-52FU Jingzhi, MA Yue, HONG Guan, et al. Recognition of wheat development stage based on I_CBAM-DenseNet model[J]. Journal of Nanjing University of Information Science Technology, 2025, 17(1):42-52
    [8] 岳有军, 漆潇, 赵辉, 等. 基于改进YOLOv8的果园复杂环境下苹果检测模型研究[J]. 南京信息工程大学学报(自然科学版), 2025, 17(1): 31-41YUE Youjun, QI Xiao, ZHAO Hui, WANG Hongjun. Apple detection in complex orchard environments based on improved YOLOv8[J]. Journal of Nanjing University of Information Science Technology, 2025,17(1):31-41
    [9] Wang Y, Wang H, Peng Z. Rice diseases detection and classification using attention based neural network and bayesian optimization[J]. Expert Systems with Applications, 2021, 178: 114770
    [10] KHAN M A, AKRAM T, SHARIF M, et al. CCDF: Automatic system for segmentation and recognition of fruit crops diseases based on correlation coefficient and deep CNN features[J]. Computers and electronics in agriculture, 2018, 155: 220-236
    [11] SIMONYAN K, ZISSERMAN A. Very deep convoluteional networks for large-scale image recogntion[EB/OL]. (2014-09-04)[2015-04-10].https://arxiv.org/pdf/1409.1556
    [12] 耿磊, 黄亚龙, 郭永敏. 基于融合注意力机制的苹果品种分类方法[J]. 农业机械学报, 2022, 53(6): 304-310GENG Lei, HUANG Yalong, GUO Yongmin. Apple Variety Classification Method Based on Integrated Attention Mechanism [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6): 304-310
    [13] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778
    [14] Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 10012-10022
    [15] LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1449-1457
    [16] YU C, ZHAO X, ZHENG Q, et al. Hierarchical bilinear pooling for fine-grained visual recognition[C]. Proceedings of the European Conference on Computer Vision (ECCV). 2018: 574-589
    [17] Ji R, Wen L, Zhang L, et al. Attention convolutional binary neural tree for fine-grained visual categorization[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 10465-10474
    [18] Nie X, Chai B, Wang L, et al. Learning enhanced features and inferring twice for fine-grained image classification[J]. Multimedia Tools and Applications, 2023, 82(10): 14799-14813
    [19] HU T, QI H, HUANG Q, et al. See better before looking closer: Weakly supervised data augmentation net-work for fine-grained visual classification[EB/OL]. (2019-01-26)[2025-03-13]. https://arxiv.org/abs/1901.09891
    [20] RAO Y, CHEN G, LU J, et al. Counterfactual attention learning for fine-grained visual categorization and reidentification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 1025-1034
    [21] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-19
    [22] STERGIOU A, POPPE R, KALLIATAKIS G. Refining activation downsampling with SoftPool[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 10357-10366
    [23] Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]. Proceedings of the IEEE International Conference on Computer Vision,Venice, Italy, 2017: 618-626
    [24] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826
    [25] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural neworks[J]. Communications of the ACM, 2017, 60(6): 84-90
    [26] HUANG G, LIU Z, VAN-DER-MAATEN L, et al. Densely connected convolutional net-works[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017: 2261-2269
    相似文献
    引证文献
    引证文献 [0]
引用本文

廖文静,黄剑满,杨洋,和红杰,陈帆.基于强监督数据增强的双阶段扎把烟叶分级模型[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:9
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2025-03-17
  • 最后修改日期:2025-05-13
  • 录用日期:2025-05-13

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司