基于优化DBNet-CRNN的端子标识检测识别算法研究
作者:
作者单位:

1.石家庄铁道大学电气与电子工程学院;2.中国铁路北京局集团有限公司石家庄供电段

基金项目:

国家自然科学基金面上项目,国能朔黄铁路发展有限责任公司科研课题


Research on terminal identification detection and recognition algorithm based on optimized DBNet-CRNN
Author:
Affiliation:

1.School of Electrical an Electronic Engineering, Shijiazhuang Tiedao University;2.Shijiazhuang Power Supply Section of China Railway Beijing Bureau Group Co.Ltd.

Fund Project:

The National Natural Science Foundation of Chi-na,The Scientific research project of Guoneng Shuohuang Railway Development Co., Ltd

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为提高变电所巡检工作效率,提出一种基于深度学习的变电所扭曲变形端子标识文本检测与识别方法。端子标识检测模型以DBNet为基本框架,将原有的ResNet主干网络替换为ConvNeXt V2,利用其现代化架构设计,显著提升模型的全局信息建模能力和对端子标识的特征提取能力。为进一步提升扭曲变形端子标识检测精度,引入高效多尺度注意力模块EMA与可变形卷积网络DCNv4,有效提升全局上下文信息捕捉能力,增强对不规则文本形状的鲁棒性,优化后,端子标识检测模型的检测精度达97.4%,相较原模型提高18.9个百分点,且计算量仅提高2.9%。端子标识识别模型以CRNN为基本框架,引入空间与通道卷积SCConv优化特征提取过程,显著减少冗余特征的同时降低计算负担。在序列建模部分,采用选择性状态空间网络Mamba替代原有的LSTM,其状态空间模型与选择性机制能够对序列数据动态建模,自适应关注序列中的重要部分,显著增强了长序列依赖关系的捕捉能力,优化后的端子标识识别模型识别准确率达98.2%,较原模型提高了2.7个百分点。实验结果表明,该方法对变电所端子标识中存在的扭曲变形、弱光模糊等负面因素具有优异的检测能力与识别精度。

    Abstract:

    In order to improve the efficiency of substation inspection, a detection and recognition method of distorted terminal logo text in substation based on deep learning was proposed. The terminal identification detection model uses DBNet as the basic framework, replaces the original ResNet backbone network with ConvNeXt V2, and uses its modern architecture design to significantly improve the global information modeling ability of the model and the feature extraction ability of the terminal identification. In order to further improve the detection accuracy of distorted terminal signs, an efficient multi-scale attention module EMA and a deformable convolutional network DCNv4 are introduced to effectively improve the ability to capture global context information and enhance the robustness to irregular text shapes. After optimization, the detection accuracy of the terminal sign detection model reaches 97.4%, which is 18.9 percentage points higher than the original model. And the amount of calculation is only increased by 2.9%. The terminal identification model takes CRNN as the basic framework, and introduces spatial and channel convolution SCConv to optimize the feature extraction process, which significantly reduces redundant features and reduces the computational burden. In the sequence modeling part, the selective state space network Mamba is used to replace the original LSTM, its state space model and selective mechanism can dynamically model the sequence data, adaptively focus on the important part of the sequence, and significantly enhance the ability to capture long sequence dependencies. The recognition accuracy of the optimized terminal identification model reaches 98.2%. It is 2.7 percentage points higher than the original model. Experimental results show that the proposed method has excellent detection ability and recognition accuracy for negative factors such as distortion, weak light and blur in substation terminal identification.

    参考文献
    相似文献
    引证文献
引用本文

王景琦,陈煜琦,薛强,赵瑞清,王硕禾.基于优化DBNet-CRNN的端子标识检测识别算法研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-21
  • 最后修改日期:2025-03-20
  • 录用日期:2025-03-25

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司