基于梯度权值追踪的域自适应分类研究
作者:
中图分类号:

TP391

基金项目:

科技创新2030—“新一代人工智能”重大项目(2018AAA0100400);国家自然科学基金(U21B2049,61936005)


Domain adaptive classification based on gradient weight pursuit
Author:
  • CUI Shaojun

    CUI Shaojun

    School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China;Engineering Research Center of Digital Forensics Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, China;Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JI Fanfan

    JI Fanfan

    Engineering Research Center of Digital Forensics Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, China;Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Ting

    WANG Ting

    Engineering Research Center of Digital Forensics Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, China;Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China;School of Computer Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YUAN Xiaotong

    YUAN Xiaotong

    Engineering Research Center of Digital Forensics Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, China;Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China;School of Computer Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文提出一种基于梯度权值追踪的剪枝与优化算法(GWP),旨在解决无监督领域中存在的过拟合问题,即在下游任务上的精度远低于在训练集上的精度.针对无监督领域自适应中基于差异与基于对抗的方法,将稠密-稀疏-稠密策略应用于解决过拟合问题.先对网络进行密集预训练,并学出哪些连接是重要的;在剪枝阶段,与原有的稠密-稀疏-稠密策略中的剪枝过程不同,本文的优化算法同时将权值和梯度联合考虑,既考虑到了权值信息(即零阶信息),也考虑到了梯度信息(即一阶信息)对网络剪枝过程的影响;在重密集阶段,恢复被修剪的连接,并以较小的学习率重新训练密集网络.最终,得到的网络在下游任务上取得了理想的效果.实验结果表明,与原有的基于差异和基于对抗的领域自适应方法相比,本文提出的GWP可以有效提升下游任务精度,且具有即插即用的效果.

    Abstract:

    Here,we propose a pruning and optimization approach based on Gradient Weight Pursuit (GWP) to address the overfitting in unsupervised domain,which manifests as significantly lower accuracy on downstream tasks compared to that on training sets.To tackle the overfitting challenge in unsupervised domain,we employ the dense-sparse-dense strategy,focusing on both difference-based and adversarial adaptive methods.First,the network is pretrained intensively to identify crucial connections.Second,during the pruning stage,the optimization algorithm in this paper distinguishes itself from original dense-sparse-dense strategy by jointly considering both weight and gradient information.Specifically,it leverages both weight (i.e.zero-order information) and gradient (i.e.first-order information) to influence pruning process.In the final dense phase,the pruned connections are restored and the dense network is retrained with a reduced learning rate.Finally,the obtained network achieves desirable outcomes in downstream tasks.The experimental results show that the proposed GWP approach can effectively improve the accuracy of downstream tasks,offering a plug-and-play capability compared with original difference-based and adversarial domain adaptation methods.

    参考文献
    相似文献
    引证文献
引用本文

崔绍君,季繁繁,王婷,袁晓彤.基于梯度权值追踪的域自适应分类研究[J].南京信息工程大学学报(自然科学版),2025,17(2):203-214
CUI Shaojun, JI Fanfan, WANG Ting, YUAN Xiaotong. Domain adaptive classification based on gradient weight pursuit[J]. Journal of Nanjing University of Information Science & Technology, 2025,17(2):203-214

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-27
  • 在线发布日期: 2025-04-16
  • 出版日期: 2025-03-28

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司