基于多权自适应交互的运动模糊图像复原
作者:
中图分类号:

TP391.4

基金项目:

国家重点研发计划(2017YFC0821001-2)


Motion blurred image restoration based on multi-weight adaptive interaction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对运动场景拍摄的图像出现不均匀模糊现象,导致工业环境下的机器视觉任务处理效率低下的问题,提出一种基于多权自适应交互的运动模糊图像复原算法.首先,采用多策略特征提取模块,从模糊图像中提取出浅层和关键的纹理信息并平滑噪声,同时构建残差语义块,深入挖掘图像的深层语义信息.然后,提出双通道自适应权重提取模块,从退化图像中捕获空间及像素的权重信息,并逐步将这些信息补偿到网络中.最后,设计出一种权重特征融合模块,融合网络所提取的多空间权重特征,并结合多项损失函数,进一步改善图像质量.所提算法在标准数据集下的主客观及消融实验结果显示,在标准数据集下的SSIM (结构相似性)和PSNR (峰值信噪比)指标分别达到0.93和31.89,各模块可以较好协调,在复原运动场景下的非均匀模糊图像方面具有显著优势.

    Abstract:

    To address the issue of inefficient processing of machine vision tasks in industrial environments caused by non-uniform blur in images captured in moving scenes,this paper proposes a motion blurred image restoration approach based on multi-weight adaptive interaction.Firstly,a multi-strategy feature extraction module is employed to extract shallow and critical texture information from blurred images while smoothing noise.Meanwhile,a residual semantic block is constructed to deeply mine the deep semantic information of the images.Secondly,a dual-channel adaptive weight extraction module is introduced to capture spatial and pixel weight information from degraded images and gradually incorporate these information into the network.Finally,a weighted feature fusion module is designed to fuse the multi-spatial weighted features extracted by the network,and multiple loss functions are combined to further improve image quality.The subjective,objective and ablation experimental results of the proposed approach on standard datasets show that the SSIM and PSNR indices reach 0.93 and 31.89,respectively.The modules work well in coordination,exhibiting significant advantages in restoring non-uniform blurred images in moving scenes.

    参考文献
    相似文献
    引证文献
引用本文

朱立忠,曹旭琪,李军.基于多权自适应交互的运动模糊图像复原[J].南京信息工程大学学报(自然科学版),2025,17(1):53-62
ZHU Lizhong, CAO Xuqi, LI Jun. Motion blurred image restoration based on multi-weight adaptive interaction[J]. Journal of Nanjing University of Information Science & Technology, 2025,17(1):53-62

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-26
  • 在线发布日期: 2025-02-22

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司