结合噪声滤波与多任务策略的输电参数辨识方法
作者单位:

1.南京信息工程大学;2.中国电力科学研究院

基金项目:

国网总部科技计划项目


Transmission Parameter Identification Method Combining Noise Filtering and Multi-Task Strategy
Author:
Affiliation:

1.Nanjing University of Information Science and Technology;2.China Electric Power Research Institute

Fund Project:

State Grid Corporation of China Project

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在输电系统的监控和管理中,参数辨识起到了关键作用。但当前的技术面临以下问题:(1)传统方法仅聚焦于单一支路的数据,忽视了整体电网拓扑中相邻支路的信息;(2)外部因素导致的数据污染(如数据丢失和噪声)对参数辨识的准确性产生了负面影响;针对上述问题,本文提出了以GraphSAGE为主体的图神经网络模型的方法。首先,该模型整合了噪声滤波模块和多任务损失训练策略,充分利用图卷积网络的优势,实现了输电系统参数的高效辨识;然后,该模型能捕获电网的拓扑信息,实现对多个支路的联合辨识;最后,该模型能实现对数据丢失和噪声的有效处理,提高了鲁棒性。实验结果表明,相比传统方法,在线路参数辨识的准确性和稳定性上,本文提出的以GraphSAGE模型为主体的方法最好。

    Abstract:

    Parameter identification plays a crucial role in the monitoring and management of transmission systems. However, current technology faces the following limitations: (1) Traditional methods only focus on the data of a single branch, ignoring the information of adjacent branches in the overall power grid topology; (2) The data pollution caused by external factors, such as data loss and noise, has a negative impact on the accuracy of parameter identification. In response to the above challenges, this article constructs a graph neural network model with GraphSAGE as the main body. This model integrates noise filtering modules and multi task loss training strategies, fully utilizing the advantages of graph convolutional networks to achieve efficient identification of transmission system parameters. This model can not only capture the topology information of the power grid, achieve joint identification of multiple branches, but also effectively handle data loss and noise, improving the robustness of the model. The experimental results show that compared to traditional methods, our GraphSAGE model has achieved significant improvements in the accuracy and stability of line parameter identification.

    参考文献
    相似文献
    引证文献
引用本文

任之婧,翁理国,夏旻,刘俊.结合噪声滤波与多任务策略的输电参数辨识方法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-06
  • 最后修改日期:2025-03-07
  • 录用日期:2025-03-07

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司