基于I_CBAM-DenseNet模型的小麦发育期识别研究
作者:
中图分类号:

TP391.4

基金项目:

国家自然科学基金(51305210);江苏省自然科学基金(BK20150924)


Recognition of wheat development stage based on I_CBAM-DenseNet model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对我国农作物发育期人工观测效率低、识别准确率不高等问题,提出一种基于I_CBAM-DenseNet模型的小麦发育期识别方法.该方法以密集连接卷积网络(DenseNet)为主干提取网络,融入卷积块注意模块CBAM.先将CBAM中的空间注意力模块(SAM)与通道注意力模块(CAM)由传统的串联连接改为并行连接,并将改进的CBAM (I_CBAM)插入到DenseNet最后一个密集网络中,构建一种I_CBAM-DenseNet模型,再选取小麦7个重要发育时期进行自动识别.为最大化提取小麦的特征信息,将超绿特征(ExG)因子和最大类间方差法(Otsu)相结合对采集到的小麦图像进行分割处理.对比分析了I_CBAM-DenseNet、AlexNet、ResNet、DenseNet、CBAM-DenseNet以及VGG等模型的准确率和损失值的变化.结果表明,采取基于I_CBAM-DenseNet的卷积神经网络建立的模型,准确率达到99.64%,高于对比模型.

    Abstract:

    To address the low efficiency and accuracy of manual observation in recognition of crop development stages,a recognition approach based on I_CBAM-DenseNet model is proposed.The approach utilizes a densely connected convolutional network (DenseNet) as the backbone extraction network and incorporates a Convolutional Block Attention Module (CBAM).The Spatial Attention Module (SAM) and Channel Attention Module (CAM) in CBAM are modified from traditional serial connection to parallel connection,and the Improved CBAM (I_CBAM) is inserted into the last dense block of DenseNet to construct the I_CBAM-DenseNet model.Seven important development periods of wheat are selected for automatic identification.To maximize wheat feature extraction,the Excess Green (ExG) feature factor and the maximum inter-class variance method of Otsu are combined to segment the acquired wheat images.The accuracy and loss values of models including I_CBAM-DenseNet,AlexNet,ResNet,DenseNet,CBAM-DenseNet and VGG are compared and analyzed.The results show that the proposed I_CBAM-DenseNet model outperforms other models with a high accuracy of 99.64%.

    参考文献
    相似文献
    引证文献
引用本文

付景枝,马悦,宏观,刘云平,吴文宇,丁明明,尹泽凡.基于I_CBAM-DenseNet模型的小麦发育期识别研究[J].南京信息工程大学学报(自然科学版),2025,17(1):42-52
FU Jingzhi, MA Yue, HONG Guan, LIU Yunping, WU Wenyu, DING Mingming, YIN Zefan. Recognition of wheat development stage based on I_CBAM-DenseNet model[J]. Journal of Nanjing University of Information Science & Technology, 2025,17(1):42-52

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-22
  • 在线发布日期: 2025-02-22

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司