基于改进YOLOv8的果园复杂环境下苹果检测模型研究
作者:
中图分类号:

TP391.4

基金项目:

天津市科技支撑计划(19YFZCSN00360,18YFZCNC01120)


Apple detection in complex orchard environments based on improved YOLOv8
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了使采摘机器人能够在果园复杂环境下(如不同光照条件、叶子遮挡、密集的苹果群和超远视距等场景)对成熟程度各异的苹果果实进行快速且精确的检测,本文提出一种基于改进YOLOv8的苹果果实检测模型.首先,将EMA注意力机制模块集成到YOLOv8模型中,使模型更加关注待检测果实区域,抑制背景和枝叶遮挡等一般特征信息,提高被遮挡果实的检测准确率;其次,使用提取特征更加高效的三支路DWR模块对原始C2f模块进行替换,通过多尺度特征融合方法提高小目标检测能力;同时结合DAMO-YOLO的思想,对原始YOLOv8颈部进行重构,实现高层语义和低层空间特征的高效融合;最后,使用Inner-SIoU损失函数对模型进行优化,提高识别精度.在复杂的果园环境中,以苹果作为检测对象,实验结果表明:本文所提算法在测试集下的查准率、召回率、mAP0.5、mAP0.5~0.95以及F1分数分别达到86.1%、89.2%、94.0%、64.4%和87.6%,改进后的算法在大部分指标上均优于原始模型.在不同数量果实场景下的对比实验结果表明,该方法具有优异的鲁棒性.

    Abstract:

    To enable harvesting robots to quickly and accurately detect apples of varying maturity levels in complex orchard environments (including different lighting conditions,leaf occlusion,dense apple clusters,and ultra-long-range vision scenarios),we propose an apple detection model based on improved YOLOv8.First,the Efficient Multi-scale Attention (EMA) module is integrated into the YOLOv8 to enable the model to focus on the region of interest for fruit detection and suppress general feature information such as background and foliage occlusion,thus improving the detection accuracy of occluded fruits.Second,the original C2f module is replaced by a more efficient three-branch Dilation-Wise Residual (DWR) module for feature extraction,which enhances the detection capability for small objects through multi-scale feature fusion.Simultaneously,inspired by the DAMO-YOLO concept,the original YOLOv8 neck is reconstructed to achieve efficient fusion of high-level semantics and low-level spatial features.Finally,the model is optimized using the Inner-SIoU loss function to improve the recognition accuracy.In complex orchard environments with apples as the detection target,experimental results show that the proposed algorithm achieves Precision,Recall,mAP0.5,mAP0.5-0.95,and F1 score of 86.1%,89.2%,94.0%,64.4%,and 87.6%,respectively on the test set.The improved algorithm outperforms the original model in most indicators,and demonstrates excellent robustness through comparative experiments with varying fruit counts,offering practical value for applications in addressing the precise identification challenge faced by fruit harvesting robots in complex environments.

    参考文献
    相似文献
    引证文献
引用本文

岳有军,漆潇,赵辉,王红君.基于改进YOLOv8的果园复杂环境下苹果检测模型研究[J].南京信息工程大学学报(自然科学版),2025,17(1):31-41
YUE Youjun, QI Xiao, ZHAO Hui, WANG Hongjun. Apple detection in complex orchard environments based on improved YOLOv8[J]. Journal of Nanjing University of Information Science & Technology, 2025,17(1):31-41

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-10
  • 在线发布日期: 2025-02-22

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司