集成SBAS-InSAR与贝叶斯网络的滑坡易发性评价
作者:
作者单位:

1.南京信息工程大学 遥感与测绘工程学院;2.南京信息工程大学 地理科学学院

基金项目:

国家自然科学(42301478;42301509);江苏省高等学校自然科学基金(22KJB170016)。


Integration of SBAS-InSAR and Bayesian Network for Landslide Susceptibility Evaluation
Author:
Affiliation:

1.School of Remote Sensing &2.Geomatics Engineering, Nanjing University of Information Science &3.Technology;4.School of Geography, Nanjing University of Information Science &

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    贝叶斯网络和SBAS-InSAR在滑坡易发性评价中已得到广泛应用。但是,如何充分发挥二者优势,融合两种方法来进一步改进滑坡易发性评价还有待探索。因此,本文以滑坡发生频繁的汉源县为研究区,根据地形、气象等数据提取出20个传统滑坡因子,并根据SAR卫星数据,使用SBAS-InSAR技术提取出地表形变速率作为形变因子来共同参与计算。使用地理探测器进行主导因子筛选后,采取有形变因子、除去形变因子以及递补一个因子的情况下,使用爬山算法结合专家知识构建贝叶斯网络结构并利用最大似然估计算法进行参数学习后进行滑坡易发性计算。结果表明:加入形变因子的贝叶斯网络模型的AUC值达到0.957,相比于不加入形变因子以及递补一个因子的贝叶斯网络分别提高8.63%和8.26%,且易发性分区结果更加合理。文中所提供的滑坡易发性评价方法可为区域防灾减灾提供指导,并为相关研究提供新的思路。

    Abstract:

    Bayesian Network and SBAS-InSAR have been widely used in landslide susceptibility evaluation. However, how to give full play to the advantages of the two methods and integrate the two methods to further improve landslide susceptibility evaluation remains to be explored. Therefore, this paper takes Hanyuan County, where landslides frequently occur, as the study area. According to topographic and meteorological data, 20 traditional landslide factors are extracted, and according to SAR satellite data, the surface deformation rate is extracted using SBAS-InSAR technology as a deformation factor to participate in the calculation. After using the GeoDetector to screen the dominant factors, the Bayesian Network structure is constructed using the hill climbing algorithm combined with expert knowledge in the case of deformation factors, removal of deformation factors, and supplementation of one factor. The landslide susceptibility calculation is performed after parameter learning using the maximum likelihood estimation algorithm. The results show that the AUC value of the Bayesian Network model with deformation factors added reaches 0.957, which is 8.63% and 8.26% higher than that of the Bayesian Network without deformation factors and supplementation of one factor, respectively, and the susceptibility zoning results are more reasonable. The landslide susceptibility evaluation method provided in this paper can provide guidance for regional disaster prevention and mitigation, and provide new ideas for related research.

    参考文献
    相似文献
    引证文献
引用本文

高鑫宇,王波,代文,李吉璇.集成SBAS-InSAR与贝叶斯网络的滑坡易发性评价[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-26
  • 最后修改日期:2025-03-13
  • 录用日期:2025-03-14

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司