多分支图谱卷积神经网络的阿尔兹海默病影像分类研究
作者单位:

南京信息工程大学

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Multi-branch mapping convolutional neural network for Alzheimer's disease image classification study
Author:
Affiliation:

Nanjing University of Information Science and Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对阿尔茨海默病(AD)与认知正常(CN)患者的脑部影像分类问题,本文提出一种多图谱特征融合模型。首先,对输入的脑部影像数据进行标准化处理,并基于不同的脑图谱模板进行脑区划分,然后执行纤维束追踪并计算邻接矩阵,以构建包含拓扑结构信息的图数据。为充分挖掘脑网络特征,本文提出一种图卷积模块,能够捕捉脑网络的高阶拓扑信息,同时引入图池化模块,在降低计算成本的同时保留核心结构信息。最后,通过多分支特征融合框架,有效整合来自不同脑图谱的特征,提高模型的泛化能力。实验结果表明,本文提出的模型在不同脑图谱模板上的特征融合效果良好,能够高效提取脑网络的局部和全局特征,实现更精准的脑部影像分类。同时,所设计的图卷积和图池化模块在提升分类性能的同时显著降低了计算开销,为基于图神经网络的医学影像分析提供了新的思路。

    Abstract:

    To address the classification problem of AD and cognitively normal (CN) patients, this study proposes a multi-atlas feature fusion model. First, the input brain imaging data undergo standardization and are then parcellated using different brain atlas templates. Fiber tractography is performed to compute adjacency matrices, constructing graph-structured data that incorporate topological information. To fully capture brain network characteristics, this study introduces a graph convolution module capable of extracting high-order topological features, along with a graph pooling module that reduces computational cost while preserving essential structural information. Finally, a multi-branch feature fusion framework is employed to effectively integrate features from different brain atlases, enhancing the model's generalization ability. Experimental results demonstrate that the proposed model achieves effective feature fusion across multiple brain atlas templates, efficiently extracting both local and global brain network features to improve classification accuracy. Additionally, the proposed graph convolution and graph pooling modules not only enhance classification performance but also significantly reduce computational costs, offering new insights into graph-based neuroimaging analysis.

    参考文献
    [1] Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer''s disease[J]. The Lancet, 2021, 397(10284): 1577-1590.
    [2] Lane C A, Hardy J, Schott J M. Alzheimer''s disease[J]. European journal of neurology, 2018, 25(1): 59-70.
    [3] Zheng W, Liu H, Li Z, et al. Classification of Alzheimer''s disease based on hippocampal multivariate morphometry statistics[J]. CNS Neuroscience & Therapeutics, 2023, 29(9): 2457-2468.
    [4] Song T A, Chowdhury S R, Yang F, et al. Graph convolutional neural networks for Alzheimer’s disease classification[C]//2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019). IEEE, 2019: 414-417.
    [5] Zafeiropoulos N, Bitilis P, Tsekouras G E, et al. Graph Neural Networks for Parkinson’s Disease Monitoring and Alerting[J]. Sensors, 2023, 23(21): 8936.
    [6] 李铁, 高乔裕, 李文许. 基于卷积增强动态图卷积特征提取的高光谱图像分类[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1837013-1837013-10.
    LI Tie, GAO Qiaoyu, LI Wenxu. Hyperspectral image classification based on convolutional enhancement dynamic map convolutional feature extraction[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1837013-1837013-10.(in Chinese)
    [8] [7] Ibrahim B, Suppiah S, Ibrahim N, et al. Diagnostic power of resting‐state fMRI for detection of network connectivity in Alzheimer''s disease and mild cognitive impairment: A systematic review[J]. Human brain mapping, 2021, 42(9): 2941-2968.
    [9] [8] Mayo C D, Garcia-Barrera M A, Mazerolle E L, et al. Relationship between DTI metrics and cognitive function in Alzheimer’s disease[J]. Frontiers in aging neuroscience, 2019, 10: 436.
    [10] [9] Maggipinto T, Bellotti R, Amoroso N, et al. DTI measurements for Alzheimer’s classification[J]. Physics in Medicine & Biology, 2017, 62(6): 2361.
    [11] [10] Liu J, Li M, Lan W, et al. Classification of Alzheimer''s disease using whole brain hierarchical network[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2016, 15(2): 624-632.
    [12] [11] Farooq A, Anwar S M, Awais M, et al. A deep CNN based multi-class classification of Alzheimer''s disease using MRI[C]//2017 IEEE International Conference on Imaging systems and techniques (IST). IEEE, 2017: 1-6.
    [13] [12] Hamdi M, Bourouis S, Rastislav K, et al. Evaluation of neuro images for the diagnosis of Alzheimer''s disease using deep learning neural network[J]. Frontiers in Public Health, 2022, 10: 834032.
    [14] [13] 龚安, 丁磊, 姚鑫杰. 基于图卷积网络的视觉问答研究[J]. 计算机与数字工程, 2022, 50(1): 135-139.
    Gong An, Ding Lei, Yao Xinjie. Research on visual question and answer based on graph convolutional network[J]. Computer and Digital Engineering, 2022, 50(1): 135-139.(in Chinese)
    [16] [14] Poria S, Cambria E, Bajpai R, et al. A review of affective computing: From unimodal analysis to multimodal fusion[J]. Information fusion, 2017, 37: 98-125.
    [17] [15] Richardson J J, Bj?rnmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms[J]. science, 2015, 348(6233): aaa2491.
    [18] [16] Mao C, Yao L, Luo Y. Imagegcn: Multi-relational image graph convolutional networks for disease identification with chest x-rays[J]. IEEE transactions on medical imaging, 2022, 41(8): 1990-2003.
    [19] [17] Mao C, Yao L, Luo Y. Imagegcn: Multi-relational image graph convolutional networks for disease identification with chest x-rays[J]. IEEE transactions on medical imaging, 2022, 41(8): 1990-2003.
    [20] [18] Cui H, Dai W, Zhu Y, et al. Braingb: a benchmark for brain network analysis with graph neural networks[J]. IEEE transactions on medical imaging, 2022, 42(2): 493-506.
    [21] [19] 黄丹, 战荫伟. 结合 K-Means 与移动最小二乘法的脑部纤维追踪方法[J]. Computer Science and Application, 2021, 11: 928.
    HUANG Dan, WAR Yinwei. A brain fiber tracking method combining K-Means and moving least squares[J]. Computer Science and Application, 2021, 11: 928.(in Chinese)
    [23] [20] Nowinski W L. Evolution of human brain atlases in terms of content, applications, functionality, and availability[J]. Neuroinformatics, 2021, 19(1): 1-22.
    [24] [21] 郝小可, 何子龙, 卢欣楚, 等. 基于多尺度残差融合图卷积网络的脑疾病诊断研究[J]. Journal of Data Acquisition & Processing/Shu Ju Cai Ji Yu Chu Li, 2024, 39(4).
    Hao Xiaoke, He Zilong, Lu Xinchu, et al. Diagnosis of brain diseases based on multi-scale residual fusion graph convolutional network[J]. Journal of Data Acquisition & Processing/Shu Ju Cai Ji Yu Chu Li, 2024, 39(4).(in Chinese)
    [26] [22] Sharma R, Almá?i M, Nehra S P, et al. Photocatalytic hydrogen production using graphitic carbon nitride (GCN): A precise review[J]. Renewable and Sustainable Energy Reviews, 2022, 168: 112776.
    [27] [23] Chi L, Jiang B, Mu Y. Fast fourier convolution[J]. Advances in Neural Information Processing Systems, 2020, 33: 4479-4488.
    [28] [24] 陈天问. 切比雪夫不等式的几个典型应用[J]. Advances in Applied Mathematics, 2022, 11: 3435.
    Chen, T. W.. Several typical applications of Chebyshev''s inequality[J]. Advances in Applied Mathematics, 2022, 11: 3435.(in Chinese)
    [30] [25] Moran S, Marza P, McDonagh S, et al. Deeplpf: Deep local parametric filters for image enhancement[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 12826-12835.
    [31] [26] Lu S, Ding Y, Liu M, et al. Multiscale feature extraction and fusion of image and text in VQA[J]. International Journal of Computational Intelligence Systems, 2023, 16(1): 54.
    [32] [27] Ge Z, Cao G, Li X, et al. Hyperspectral image classification method based on 2D–3D CNN and multibranch feature fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5776-5788.
    [33] [28] Yu C, Han R, Song M, et al. A simplified 2D-3D CNN architecture for hyperspectral image classification based on spatial–spectral fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2485-2501.
    [34] [29] Gong J, Liu W, Pei M, et al. ResNet10: A lightweight residual network for remote sensing image classification[C]//2022 14th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, 2022: 975-978.
    [35] [30] Hasan N, Bao Y, Shawon A, et al. DenseNet convolutional neural networks application for predicting COVID-19 using CT image[J]. SN computer science, 2021, 2(5): 389.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林文轩,徐军.多分支图谱卷积神经网络的阿尔兹海默病影像分类研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:3
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-12-23
  • 最后修改日期:2025-03-10
  • 录用日期:2025-03-12

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司