基于多源数据融合的输电线路故障原因辨识方法
DOI:
作者:
作者单位:

1.国网河北省电力有限公司;2.上海泽鑫电力科技股份有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

国网河北电力有限公司项目(SGHE0000DKJS2400586)


Method for identifying the causes of transmission line faults based on multi-source data fusion
Author:
Affiliation:

1.State Grid Hebei Electric Power Co., Ltd.;2.Shanghai Zexin Power Science and Technology Co., Ltd.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    输电线路是电力系统稳定运行的关键元素,当输电线路发生故障时,如何快速而准确地识别故障原因对电力系统安全稳定运行具有重要意义。针对现有输电线路故障原因辨识方案存在低精确问题,提出一种多源数据融合的输电线路故障原因辨识方法。首先,刻画输电线路不同故障类型的外界干扰因素和数据波形特征,为多源数据输入提供理论支持;其次,利用格拉姆角场及特征编码对故障信息进行预处理,从时序波形、二维图像和离散特征角度构造不同故障类型的特征表达方式;然后,设计了一种自适应边界参数融合长短时记忆神经网络、卷积神经网络和人工神经网络对输电线路故障原因进行辨识分类;最后,通过真实数据对比测试验证了所提方法的有效性和先进性,为完成高精度的输电线路故障原因辨识任务提供可靠解决方案。

    Abstract:

    Transmission lines are critical elements for the stable operation of power systems. When a fault occurs on a transmission line, the ability to quickly and accurately identify the cause of the fault is of great significance for the safe and stable operation of the power system. To address the low accuracy problem present in existing transmission line fault cause identification schemes, this paper proposes a method for identifying transmission line fault causes based on multi-source data fusion. First, external interference factors and waveform characteristics corresponding to different types of transmission line faults are analyzed to provide theoretical support for multi-source data input. Next, the Gramian Angular Field and feature encoding techniques are employed to preprocess fault information, constructing feature representations for different fault types from the perspectives of time-series waveforms, two-dimensional images, and discrete features. Furthermore, a method is designed that fuses adaptive boundary parameters with Long Short-Term Memory neural networks, Convolutional Neural Networks , and Artificial Neural Networks to classify and identify the causes of transmission line faults. Finally, the effectiveness and superiority of the proposed method are verified through comparative tests on real-world data, providing a reliable solution for accomplishing the high-precision task of transmission line fault cause identification.

    参考文献
    相似文献
    引证文献
引用本文

萧彦,任江波,何亚坤,朱洪堃,姜健琳.基于多源数据融合的输电线路故障原因辨识方法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-28
  • 最后修改日期:2024-12-13
  • 录用日期:2024-12-13
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司