基于TTBiGRUA的碳价预测研究
作者:
作者单位:

1.河南大学管理科学与工程研究所;2.河南大学商学院

中图分类号:

F830.9

基金项目:

国家社会科学基金(23BJY014);河南省高等学校哲学社会科学基础研究重大项目(2021JCZD01);河南省哲学社会科学规划年度项目(2022BJJ030).


Carbon price prediction research based on TTBiGRUA model
Author:
Affiliation:

1.Institute of Management Science and Engineering, Henan University;2.Business school of Henan University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    碳价格具有非线性、非平稳等复杂特征,其预测颇具挑战性。为了提高预测精度,提出一种结合基于时变滤波器经验模态分解(Time-Varying Filter Empirical Modal Decomposition,TVFEMD)、样本熵(Sample Entropy,SE)、双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)和差分整合移动平均自回归(Autoregressive Integrated Moving Average Model,ARIMA)的碳价预测模型TTBiGRUA。首先,通过TVFEMD将碳价格分解为不同频率的模态分量。其次,利用样本熵评估各分量复杂度,并采用K-means算法进行重构。随后,对重构后波动性最强的模态分量运用TVFEMD二次分解,以进一步提取特征并减少模态混叠。根据样本熵划分高频分量和低频分量。高频分量由BiGRU预测,低频分量则由ARIMA预测,最后将分量预测结果叠加得到碳价格最终预测结果。应用广东和湖北碳市场的实际碳价数据,使用5个评价指标和Diebold Mariano(DM)检验评估模型的预测有效性和鲁棒性。结果表明,所提出模型预测精度优于其他基准对比模型。

    Abstract:

    Given the complex characteristics of carbon price series, such as nonlinearity and non-smoothness, the prediction is quite challenging. To improve the forecasting accuracy, TTBiGRUA was proposed as a carbon price prediction model, which combines time-varying filter empirical modal decomposition (TVFEMD), sample entropy (SE), bidirectional gated recurrent unit (BiGRU) and autoregressive integrated moving average (ARIMA) . First, the carbon price was decomposed into modal components with different frequencies by TVFEMD; then, the sample entropy was used to evaluate the complexity of each component and the K-means algorithm was used for reconstruction. Secondary TVFEMD decomposition was then applied to the most volatile modal components after reconstruction to further extract features and reduce modal aliasing. The high-frequency and low-frequency components were separated according to the sample entropy. The high-frequency components were predicted by BiGRU, while the low-frequency components were predicted by ARIMA, and the final prediction results were obtained by superimposing the component prediction results. We applied the actual carbon price data from the carbon markets in Guangdong and Hubei, China, and evaluated the predictive validity and robustness of the model by applying five evaluation indicators and the Diebold-Mariano (DM) test. The results show that the predictive accuracy of the proposed model is better than other benchmark comparison models.

    参考文献
    相似文献
    引证文献
引用本文

姚远,李晨硕.基于TTBiGRUA的碳价预测研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-23
  • 最后修改日期:2025-04-01
  • 录用日期:2025-04-02

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司